
Solar Energy Materials & Solar Cells 206 (2020) 110219

Available online 30 November 2019
0927-0248/© 2019 Elsevier B.V. All rights reserved.

NiCr–MgF2 spectrally selective solar absorber with ultra-high solar 
absorptance and low thermal emittance 

Yuping Ning a,b, Jian Wang a,*, Chunhui Ou a, Changzheng Sun a, Zhibiao Hao a, Bing Xiong a, 
Lai Wang a, Yanjun Han a, Hongtao Li a, Yi Luo a,** 

a Department of Electronics Engineering, Tsinghua University, Beijing, 100084, China 
b Institute of Microelectronics, Tsinghua University, Beijing, 100084, China   

A R T I C L E  I N F O   

Keywords: 
NiCr-MgF2 solar absorber 
Spectral selectivity 
Solar absorptance 
Thermal emittance 

A B S T R A C T   

NiCr–MgF2 spectrally selective solar absorber, which consists of the tandem films of Au, high-metal-volume- 
fraction (HMVF) NiCr–MgF2, low-metal-volume-fraction (LMVF) NiCr–MgF2 and MgF2, is designed and fabri
cated for ultra-high solar absorptance and low thermal emittance. The performance of Au/NiCr–MgF2 (HMVF)/ 
NiCr–MgF2 (LMVF)/MgF2 is simulated using the effective medium theory and film matrix method, and the 
optimized NiCr–MgF2 spectrally selective solar absorber has a normal solar absorptance (αsn) of 0.981 and a 
normal thermal emittance (εn) of 0.042 at 25 �C. The tandem films of Au/NiCr–MgF2 (HMVF)/ 
NiCr–MgF2(LMVF)/MgF2 are fabricated by magnetron sputtering and measured by UV-VIS-IR spectrometer, and 
it has an ultra-high near normal solar absorptance of αsn ¼ 0.976 and a low near normal thermal emittance of 
εn ¼ 0.045 at 25 �C, which approaches very closely to the simulated limit. Furthermore, NiCr–MgF2 spectrally 
selective solar absorber allows a wide incident angle (θ) with its angular solar absorptance αs(θ)�0.957 and 
angular thermal emittance ε(θ)�0.054 if θ � 50�. Such spectrally selective solar absorber is an outstanding 
candidate for solar thermal applications.   

1. Introduction 

Spectrally selective solar absorber captures and converts sunlight 
into thermal energy [1], and they are applied to solar hot water systems 
[2], concentrated solar power (CSP) plants [3–9], solar thermoelectric 
generators [10] and solar thermophotovoltaics [11]. To maximize 
photo-thermal conversion efficiency, the solar absorber should have 
high solar absorptance (αs) in the solar spectrum range (0.3–2.5 μm) and 
low thermal emittance (ε) in the infrared (IR) range (λ > 2.5 μm) 
[12–18]. 

Thus far, various solar absorbers have been widely investigated, for 
example, (1)intrinsic absorbers [19], (2)semiconductor-metal tandems 
[20], (3)multilayer stacks [21], (4)metal-dielectric (cermet) composite 
absorbers [12], (5)textured surfaces [22], and (6)selectively 
solar-transmitting coatings on blackbody-like absorbers [21]. Among 
them, cermet based solar absorbers have been attracting the attention of 
researchers due to their excellent performance on the spectral selec
tivity, i.e. high αs and low ε [23–25]. When metal nanoparticles are 

imbedded in the dielectric matrix, the cermet layer strongly absorbs 
solar radiation due to interband transitions in metal together with small 
particle resonances and becomes relatively transparent in IR range. This 
enables a high spectral selectivity for the cermet based solar absorber [1, 
12,26,27]. Using Cr2O3, Al2O3, AlN, SiO2 and ZrO2 based cermet as 
absorption layer, the solar absorbers have demonstrated outstanding 
optical properties [28–34]. For the experimentally optimized cermet 
based solar absorbers, the values of solar absorptance and thermal 
emittance are mostly 0.93–0.96 and 0.05–0.10 for temperatures from 25 
to 100 �C, respectively [28,30,33]. To date, the Ni–NiO cermet based 
solar absorber [24] is known to show the best spectral selectivity (αs/ε) 
being 0.969/0.047. How to improve the spectral selectivity of the 
cermet based solar absorber further is still an urgent and severe 
challenge. 

The purpose of our research work is to achieve solar absorber with 
superior spectral selectivity. For this target, an optimal coating struc
ture, appropriate materials and optimization method for the developed 
solar absorber are prepared. Firstly, a double cermet layer structure, 
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providing an optimal spectral selectivity for the solar absorber, is 
adopted [35]. Secondly and crucially, optically optimal dielectric ma
terials for the cermet absorption layer and antireflection layer are cho
sen. The dielectric materials with lower refractive index (n), can make 
the sunlight sufficiently permeate into the solar absorber, which is 
benefit for enhancing solar absorption. In addition, the antireflection 
layer with lower refractive index material brings a better antireflective 
effect for sunlight, improving solar absorption further [23]. Compared 
with the above dielectric material for cermet layers (n(AlN) ¼ 2.13, n 
(Cr2O3) ¼ 2.12, n(ZrO2) ¼ 2.12, n(Al2O3) ¼ 1.67, n(SiO2) ¼ 1.47 at 
λ ¼ 1 μm), the MgF2 (n(MgF2) ¼ 1.37 at λ ¼ 1 μm) has the lowest 
refractive index [36–41]. Hence, MgF2 is selected as the dielectric ma
terial for the cermet and the antireflection layers in order to maximize 
solar absorption. The alloy NiCr is chosen as the light absorbing metal 
component in the cermet layers. Compared with low cost metals, e.g. Al 
and Cu, Au film has higher reflectance in IR range and is adopted as the 
IR reflector in our absorber. Finally, a theoretically optimization pro
cess, based on the effective medium theory and film matrix method [23, 
24,42,43], is carried out to acquire the optimal parameters for the 
NiCr–MgF2 cermet based solar absorber before preparation. 

In this paper, a novel Au/NiCr–MgF2 (HMVF)/NiCr–MgF2 (LMVF)/ 
MgF2 solar absorber with the double cermet layer structure, is theoret
ically optimized and fabricated by magnetron sputtering. The fabricated 
solar absorber is found to have an extremely high near normal solar 
absorptance of 0.976 and a low near normal thermal emittance of 
0.045 at 25 �C. To the best of our knowledge, this is the best spectral 
selectivity reported so far. Furthermore, the NiCr–MgF2 cermet based 
solar absorber allows a wide incident angle (θ) with its angular solar 
absorptance αs(θ)�0.957 and angular thermal emittance ε(θ)�0.054 if 
θ � 50�. 

2. Theoretical model 

The spectral selectivity of a solar absorber is evaluated by the solar 
absorptance and thermal emittance. The angular solar absorptance 
αs(θ), angular thermal emittance ε(θ) and hemispherical thermal emit
tance εh are defined by Eqs. (1)–(3), respectively, 

αsðθÞ¼

Z 2:5μm

0:3μm
ð1 � Rðθ; λÞÞIsðλÞdλ
Z 2:5μm

0:3μm
IsðλÞdλ

(1)  

εðθÞ ¼

Z 100μm

2:5μm
ð1 � Rðθ; λÞÞIbðλ; TÞdλ
Z 100μm

2:5μm
Ibðλ;TÞdλ

(2)  

εh¼

Z π=2

0

Z 100μm

2:5μm
sinð2θÞð1 � Rðθ; λÞÞIbðλ; TÞdλdθ
Z 100μm

2:5μm
Ibðλ; TÞdλ

(3)  

where IsðλÞ, Ibðλ;TÞ and Rðθ; λÞ are respectively the solar radiation 
spectrum, blackbody radiation spectrum at 25 �C and angular reflec
tance spectrum of the solar absorber [25,44]. The normal solar 
absorptance and normal thermal emittance are marked as αsn and εn, 
respectively. The photo-thermal conversion efficiency η is introduced to 
characterize the compromise of normal solar absorptance and hemi
spherical thermal emittance as [25]: 

η¼αs �
εhσT4

CI
(4)  

where σ, T, C, and I are Stefan-Boltzmann constant, working tempera
ture of solar absorber, concentration ratio and solar radiation, 

respectively. In our simulation, the conditions are as follows: T ¼ 25 �C, 
C ¼ 2.3 and I ¼ 1000 Wm-2. 

The double cermet layer structure of the NiCr–MgF2 cermet based 
solar absorber consists of four layers (Fig. 1) [35]: (1) An antireflection 
(AR) MgF2 layer that enhances the transmission of solar radiation by 
antireflection. (2) HMVF and LMVF cermet layers which absorb solar 
radiation by the combination of intrinsic and interference absorption. 
(3) An IR-reflector Au layer, which has high reflectance in IR region to 
reduces the thermal emittance. The thickness of the Au layer is 
~100 nm, which is optically opaque in IR region. The HMVF and LMVF 
cermet layers are composed of many NiCr and MgF2 minilayers which 
are alternately deposited. The expected metal volume fraction is 
adjusted by the current and deposition times of the NiCr and MgF2 
minilayers. 

The optical constants (refractive index n and extinction coefficient k) 
of Au, Ni, Cr and MgF2 are obtained from Refs. [41,45,46]. The optical 
constants of alloy NiCr in the cermet layer are calculated by Eq. (5): 

~n

0

@NiCr

1

A¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4~nðNiÞ2 þ ~n
�
Cr
�2

5

s

(5)  

where ~n ¼ nþ ik is the complex refractive index [47]. The Bruggeman 
model based on the effective medium theory [23], is adopted to calcu
late the optical constants of the NiCr–MgF2 cermet layer. Having ac
quired the optical constants of the four layers, the reflectance spectra of 
this NiCr–MgF2 cermet based multilayer solar absorber are calculated 
using the film matrix approach [48]. Finally the values of solar 
absorptance, thermal emittance and photo-thermal conversion effi
ciency are calculated according to Eqs. (1)–(4). 

3. Experimental section 

The stainless steel (SS)/Au/NiCr–MgF2 (HMVF)/NiCr–MgF2 

Fig. 1. (a) Schematic diagram and (b) cross-sectional TEM micrograph of the 
Au/NiCr–MgF2 (HMVF)/NiCr–MgF2 (LMVF)/MgF2 solar absorber. 
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(LMVF)/MgF2 solar absorber is prepared using magnetron sputtering 
systems. The size of all the targets is 200 � 60 � 3 mm3. An Au (99.99% 
purity) target, a Ni–Cr alloy (Ni4Cr, 99.95% purity) target and an MgF2 
(99.99% purity) target are used to deposit the Au metal layer, 
NiCr–MgF2 cermet layers and MgF2 layer. The NiCr–MgF2 cermet layers 
are prepared by sputtering metal NiCr and dielectric MgF2 alternately. 
The polished SS substrates are cleaned with acetone followed by ethanol 
using an ultrasonic cleaner. The base pressure of the chamber of 
magnetron sputtering system is pumped to 4 � 10� 4 Pa. Table 1 shows 
the detailed fabrication parameters for the NiCr–MgF2 cermet based 
solar absorber. 

The reflectance spectra in 0.3–2.5 μm and 2.5–24 μm are measured 
using Cary 5000 UV–Vis–NIR and Bruker Vertex 80 FT-IR spectrometers, 
respectively. The near normal reflectance spectra in 0.3–2.5 μm and 
2.5–24 μm are measured using an integrating sphere accessory with 
incident angle of 3�400 and an A519 VW mirror reflectance accessory 
with incident angle of 12�, respectively. The angular reflectance spectra 
in 0.3–2.5 μm and 2.5–24 μm are measured by a UMA angular reflec
tance accessory (6–80�) and an A513/Q angular reflectance accessory 
(15–80�), respectively. The reflectance values in 25–100 μm are 
extrapolated referring to standard EN 673 [27]. The cross-sectional 
image of the solar absorber deposited on Si substrate are measured 
using FEI Tecnai TF-20 transmission electron microscopy (TEM). The 
thickness of the absorber is determined from the cross-sectional micro
graph [49]. The reflectance and transmittance spectra in 0.3–2.5 μm of 
the NiCr–MgF2 cermet layers deposited on quartz substrate are 
measured by Cary 5000 UV–Vis–NIR spectrometer. The optical con
stants of the NiCr–MgF2 cermet layers are fitted by the matrix formu
lation approach [48,50] based on the reflectance, transmittance and 
thickness. 

4. Results and discussion 

4.1. Theoretical optimization of solar absorber 

4.1.1. Effect of metal volume fractions 
The refractive index (n(λ)) and absorption coefficient (α(λ) ¼ 4πk 

(λ)/λ) of the NiCr–MgF2 cermet layers with different metal volume 
fractions (f) on the wavelength are calculated by effective medium 
theory (Fig. 2 (a) and (b)). The measured n(λ) and α(λ) of the deposited 
NiCr–MgF2 cermet layers with f ¼ 0.13 and 0.25 agree well with the 
calculated values (Fig. 2 (c) and (d)). The n(λ) of MgF2 and α(λ) of NiCr 
are also plotted in Fig. 2 (a) and (b), respectively, for the designed 
tandem films. According to Kirchhoff’s law, an ideal cermet layer of 
solar absorber needs to have high α(λ) in solar spectrum range (λ2[0.3, 
2.5] μm) and zero α(λ) in thermal emission range (λ � 2.5 μm). It is 
observed that in reality NiCr–MgF2 cermet does not exhibit ideal spec
tral selectivity features. As shown in Fig. 2 (b), NiCr–MgF2 cermet with 
f � 0.4 has a certain degree of spectral selectivity, i.e., greater α(λ) in 
λ2[0.3, 2.5] μm than that in λ � 2.5 μm, and under consideration of 
cermet to selectively absorb solar radiation. However, the solar ab
sorption coefficient and spectral selectivity of cermet are contradictory. 
The cermet with higher metal volume fraction has greater α(λ), which is 
helpful to absorb solar radiation under the condition of effective anti
reflection. The cermet with higher metal volume fraction is found to 

exhibit less difference in the absorption coefficient between solar spec
trum range and thermal emission range of the solar absorber. Therefore, 
metal volume fractions in both LMVF and HMVF NiCr–MgF2 need to be 
chosen carefully to compromise solar absorption and spectrally selec
tivity. Moreover, individual layers with different metal volume fractions 
have different n(λ) and k(λ), which lead to reflection at interfaces. Such 
reflection is not good for absorbing solar radiation, but is helpful to 
suppress the thermal radiation by reflecting the incident infrared radi
ation. Therefore, the combination of thicknesses of individual layers also 
need to be optimized to minimize the reflection in solar spectrum range 
and maximize the reflection in IR range. These contribute to effective 
absorption of solar radiation and suppression of IR radiation. 

Metal volume fractions of LMVF (fL) and HMVF (fH) NiCr–MgF2 are 
chosen in the range of 0.1–0.2 and 0.2–0.4, respectively. NiCr–MgF2 
with metal volume fraction of fL has good spectral selectivity and the 
counterpart with fH absorbs solar radiation effectively. Combination of 
fL and fM is also for the effective reflection in IR radiation due to the big 
differences of n and k of individual layers in IR region. 

4.1.2. Effect of layer thicknesses 
Thicknesses of MgF2 (dAR)、LMVF NiCr–MgF2 (dLMVF) and HMVF 

NiCr–MgF2 (dHMVF) are optimized with the optically opaque Au 
(100 nm) on the substrate for constructive interference absorption to 
solar radiation and keeping high reflectance in IR region by transfer 
matrix. Fig. 3 shows the simulated normal solar absorptance and normal 
thermal emittance of NiCr–MgF2 solar absorber as a function of thick
nesses of MgF2, LMVF and HMVF NiCr–MgF2, where dAR, dLMVF and 
dHMVF are in the range of 0–200 nm and metal volume fractions of LMVF 
and HMVF NiCr–MgF2 are 0.17 and 0.32, respectively. As shown in 
Fig. 3 (a), the normal solar absorptance is mainly determined by LMVF 
and HMVF NiCr–MgF2, whose critical thicknesses are about 50–100 nm 
for effective absorption of solar radiation. Fig. 3 (b) shows the set of dots 
of [dAR, dLMVF, dHMVF] whose corresponding normal solar absorptance 
are not less than 0.970, and the maximum normal solar absorptance is 
0.983 at [dAR, dLMVF, dHMVF] ¼ [86, 82, 174] nm. These dots form a 
relatively big volume in the space of [dAR, dLMVF, dHMVF]. It indicates a 
wide process window of high-solar-absorptance for NiCr–MgF2 solar 
absorber arising out of low n and k of MgF2 in UV-VIS-IR range. As 
shown in Fig. 3(c), the normal thermal emittance of NiCr–MgF2 absorber 
is mainly determined by HMVF NiCr–MgF2, and the thicker HMVF 
NiCr–MgF2 results in higher normal thermal emittance. It can be 
observed that in the IR range (λ � 2.5 μm), the MgF2 and LMVF 
NiCr–MgF2 have extremely low absorption coefficients, resulting 
negligible effect of the thickness dAR and dLMVF on the normal thermal 
emittance. Fig. 3 (d) shows the set of dots of [dAR, dLMVF, dHMVF] whose 
corresponding εn � 0.050. Fig. 3 (e) shows the set of dots of [dAR, dLMVF, 
dHMVF] whose corresponding αsn � 0.970 and εn � 0.050. As marked in 
Fig. 3(e) and listed in Table 2, the maximal η is 0.971 at [dAR, dLMVF, 
dHMVF] ¼ [84, 77, 137] nm and [fLMVF, fHMVF] ¼ [0.17, 0.32], and the 
corresponding normal solar absorptance and normal thermal emittance 
are 0.981 and 0.042, respectively. 

4.1.3. Effect of incident angles 
Spectral reflectance at near normal incidence is usually measured to 

characterize optical property of solar absorber. Actually, the solar 
absorptance is strongly dependent on the incident angle of sunlight on 
the absorber surface due to the varied position of the sun with time. 
Therefore it is valuable for solar absorber to have high absorptance at 
wide incident angle range for both CSP and non-CSP applications [32, 
43,51–54]. Fig. 4 shows the simulated absorptance spectra of the opti
mized solar absorber at different incident angles from 0� to 90�. The 
optimized solar absorber shows an excellent spectral selectivity over a 
wide angular range from 0� up to 50�. As the condition of constructive 
interference absorption is not valid at big incident angles, the absorp
tance in solar spectrum range decreases significantly and thus the solar 
absorptance deteriorates if incident angle is greater than 50�. While the 

Table 1 
The deposition parameters of the Au/NiCr–MgF2 (HMVF)/NiCr–MgF2 (LMVF)/ 
MgF2 solar absorber.  

Sublayers Sputtering 
method 

Ar 
(sccm) 

Sputtering 
pressure (Pa) 

Power 
(W) 

Deposition 
rate (nm/ 
min) 

NiCr DC 100 0.1 31 7.6 
MgF2 RF 100 0.1 200 5.2 
Au RF 110 2 300 14  
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thermal emittance is almost independent on the incident angle. 

4.2. Experimental deposited solar absorber 

4.2.1. Near normal solar absorptance and thermal emittance 
Fig. 5 shows the measured reflectance spectrum of the deposited 

NiCr–MgF2 solar absorber with optimized metal volume fractions and 
thicknesses, which matches the simulated counterpart very well. The 
near normal solar absorptance are high up to 0.976 and the near normal 
thermal emittance at 25 �C are as low as 0.045, which is the best result as 
far as we know and very close to the limit of simulation. The high normal 
solar absorptance comes from three near-zero interference minimums 
which are located in 400–500 nm, 700–800 nm, and 1700–2000 nm, 
originating from interferences between MgF2, LMVF and HMVF 
NiCr–MgF2, and Au layers. The first interference minimum located at 
400–500 nm results from λ/4 antireflection of MgF2 as 
nMgF2(λ ¼ 400–500 nm)�1.38 and 4nMgF2dMgF2 � 4 � 1.38 � 84 nm  
� 464 nm. Meanwhile, the third interference minimum located at 
1700–2000 nm is due to λ/4 antireflection of LMVF and HMVF 
NiCr–MgF2, because nLMVF and nHMVF at such wavelength range are 
about 2.00 and 2.46 and 4(nLMVFdLMVF þ nHMVFdHMVF)�4 � (2.00 � 77 
nm þ 2.46 � 137 nm)�1964 nm. The second interference minimum 
located at 700–800 nm is originated from 3λ/4 antireflection of MgF2, 
LMVF and HMVF NiCr–MgF2 as 4(nMgF2dMgF2þnLMVFdLMVF þ

nHMVFdHMVF)/3�(4 � 1.38 � 84 nm þ 4 � 1.84 � 77 nm þ 4 � 2.01 �

137 nm)/3 � 711 nm. The low normal thermal emittance comes from 
the low absorptance to IR radiation and the sharp step response from 
high absorptance to low absorptance at transition wavelength range, 
which is due to the moderate thickness of HMVF NiCr–MgF2 and high 
interface reflectance to IR radiation. The minor difference between the 
experimental and simulated normal solar absorptance results from the 
deviations between measured and simulated reflectance at 400–600 nm 
and 1000–1200 nm. Such deviations probably come from the difference 
of optical constants of Ni, Cr and MgF2 between thin films deposited by 
magnetron sputtering and counterparts in the database. The extremely 
small difference between the experimental and simulated normal ther
mal emittance is due to the deviation between measured and simulated 
reflectance at λ � 15 μm and such deviation is in tolerance of measure
ment error of IR spectrometer. 

4.2.2. Angular solar absorptance and thermal emittance 
Fig. 6 shows the measured solar absorptance and thermal emittance 

values as a function of incident angle, which matches the simulated 
values very well. The experimental angular solar absorptance maintains 
very high values of 0.976–0.957 over a wide angular range from 0� up to 
50�. When the incident angle increases from 60� to 80�, the experi
mental angular solar absorptance value decreases rapidly from 0.922 to 
0.609. However, such angular dependence is a common shortcoming of 
interferometric solar absorber, and 50� is a fairly good result thanks to 
the low refractive index of MgF2. Moreover, the reflectance in λ � 2.5 μm 

Fig. 2. (a) Refractive index and (b) absorption coefficient of the NiCr–MgF2 cermet layers with different metal volume fractions calculated by effective medium 
theory. (c) Refractive index and (d) absorption coefficient of the deposited NiCr–MgF2 cermet layers with metal volume fraction of 0.13 and 0.25 calculated by 
effective medium theory and measured by reflectance, transmittance and thickness, respectively. 
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has slight dependence on incident angle as it is mainly determined by 
differences of optical constants of all individual, and thus the thermal 
emittance is almost independent of incident angle. Therefore, the 
angular thermal emittance has low values of 0.045–0.054 from 0� up to 
50�. 

5. Conclusions 

An Au/NiCr–MgF2(HMVF)/NiCr–MgF2(LMVF)/MgF2 spectrally se
lective solar absorber is designed and fabricated for ultra-high solar 
absorptance and low thermal emittance. The performance of NiCr–MgF2 
solar absorber is simulated using the effective medium theory and film 
matrix method, and the theoretically optimized NiCr–MgF2 solar 

Fig. 3. The simulated normal solar absorptance, normal thermal emittance and photo-thermal conversion efficiency as a function of thicknesses of HMVF, LMVF and 
AR layers. (b) and (d) show the set of dots of [dAR, dLMVF, dHMVF] whose corresponding αsn � 0.970 and εn � 0.050, respectively. (e) shows the photo-thermal 
conversion efficiency η in the set of dots of [dAR, dLMVF, dHMVF] whose corresponding αsn � 0.970 and εn � 0.050, and the white circle represents the positon of 
maximal η. 
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absorber has a normal solar absorptance (αsn) of 0.981 and a normal 
thermal emittance (εn) of 0.042 at 25 �C. The tandem films of NiCr–MgF2 
solar absorber is fabricated by magnetron sputtering and it has an ultra- 
high near normal solar absorptance of αsn ¼ 0.976 and a low near normal 
thermal emittance of εn ¼ 0.045 at 25 �C, which is very close to the 
simulated limit. Furthermore, the deposited NiCr–MgF2 solar absorber 
allows a wide incident angle of 50� with αs(θ)�0.957 and ε(θ)�0.054. 
Such spectrally selective solar absorber is an outstanding candidate for 
solar thermal applications. 
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