
Chapter 8 

Nonlinear Optics 

8.1 I N T R O D U C T I O N  

The subject of polarization as related to reflection and transmission in 
isotropic homogeneous optical media such as optical glass was considered 
via Maxwell equations in Chapter 5. Here, we consider the subject of 
propagation and polarization in crystalline media, which gives origin to 
the subject of nonlinear optics. The brief treatment given here is at an 
introductory level and designed only to highlight the main features relevant 
to frequency conversion. For a detailed treatment on the subject of nonlinear 
optics, the reader is referred to a collection of books on nonlinear optics, 
including Bloembergen (1965), Baldwin (1969), Shen (1984), Yariv (1985), 
Mills (1991), Boyd (1992), and Agrawal (1995). 

For propagation in an isotropic medium, the polarization P is related to 
the electric field by the following identity: 

P = X(1)E (8.1) 

where X C1) is known as the electric susceptibility. 
In a crystal, the propagating field induces a polarization that depends on the 

direction and magnitude of this field, and the simple definition given in Eq. (8.1) 
must be extended to include the second- and third-order susceptibilities, so 

P = X(1)E + X(2)E 2 + X(3)E 3 -+-... (8.2) 

Second-harmonic generation, sum-frequency generation, and optical para- 
metric oscillation depend on X (2), while third-harmonic generation depends 
on X (3) . 
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T h e  s e c o n d - o r d e r  n o n l i n e a r  p o l a r i z a t i o n  p(2) = X(2)E2 c a n  be  e x p r e s s e d  in  
m o r e  d e t a i l  u s i n g  

E( t )  = E l e  -ic~ + E2e -i~ + . . .  (8 .3)  

according to Boyd (1992), so 

e(2)  _ X(2)(E~e-2i~olt q_ E2e-2i~o2t _+_ 2E1E2e-i(co,+~o2)t _+_ 2E1E~e-i(~o,-~o2)t 

+2E~E2e-i(c~176 . . .) q- 2X (2) (E1E~ q- E2E~) (8 .4)  

The first two terms of this equation relate to second-harmonic generation, the 
third term to sum-frequency generation, and the fourth term to difference- 
frequency generation. 

Nonlinear susceptibility is described using tensors, which for the second 
order take the form of XI2d. In shorthand notation these are described b y  

1 (2) (8 5) dijk -- -2 Aijk 

In Table 8.1, second-order nonlinear susceptibilities are listed for some well- 
known crystals. 

Identities useful in this chapter are 

km -- nmCOm/C 
km -- 2 7rnm / )~m 
/~/m i (ECOm) 1/2 

(8.6) 
(8.7) 
(8.8) 

Table 8.1 
Second-Order Nonlinear Optical Susceptibilities "'b 

Crystal Point group dit = 1 X(2) 

ADP 42 m d36 = 0.53 
KDP 42 m d36 = 0.44 
LiNbO3 3 m d22 = 2.76, d31 = -5.44 
BBO 3m d22 = 2.22,d31 = 0.16 
KTP mm2 d31 --- 6.5, d32 = 5.0d33 -- 13.7, d24 -- 7.6,d15 = 6.1 
AgGaS 2 42 m d36 = 13.4 
AgGaSe 2 42 m d36 = 37.4 

Source: Barnes (1995). 
aUnits of dit are in 10-12 m/V. 
bThe dit matrix element is a contracted notation for dijk (see, for example, Boyd, 1992). 
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8.2 GENERATION OF FREQUENCY HARMONICS 

Here, a basic description of second-harmonic, sum-frequency, and difference- 
frequency generation is given. The difference-frequency generation section 
is designed to describe some of the salient aspects of optical parametric 
oscillation. 

8.2.1 SECOND-HARMONIC AND SuM-FREQUENCY GENERATION 

Previously, Maxwell equations were applied to describe propagation in 
isotropic linear optical media. Here the propagation of electromagnetic 
radiation in crystals is considered from a practical perspective consistent 
with the previous material on polarization. 

Maxwell equations in the Gaussian system of units are given by (Born 
and Wolf, 1999) 

V - B = 0  (8.9) 
V.  E = 47rp (8.10) 

V x H = ( 1 / c ) ( O D / O t  + 47rj) (8.11) 
V • E = - ( 1 / c ) ( O B / O t )  (8.12) 

For a description of propagation in a crystal we adopt the approach of Boyd 
(1992) and further consider a propagation medium characterized by p = 0, 
j - 0, and B - H. The nonlinearity of the medium introduces 

O = E + 47rP (8.13) 

As in Chapter 5, taking the curl of both sides of Eq. (8.12) and using 
Eq. (8.13) leads to 

V X V X E -  -c-2(V2E-Jr-47rVZP) (8.14) 

which is the generalized wave equation for nonlinear optics. Here, 
- ( o 2 1 o t b .  

Following Boyd (1992), it is useful to provide a number of defin- 
itions starting by separating the polarization into its linear and nonlinear 
components, 

P = PL -Jr- PNL (8.15) 
followed by the separation of the displacement into 

D = DL + 47rPNL (8.16) 
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DL = E + 47rPL (8.17) 

Using this definition, the nonlinear wave equation can be rewritten as 

2 47rV~PNL) V x V x E -  - c  - 2  (V tD  L + (8.18) 

In Chapter 5, for an isotropic material, we saw that 

DL = c E  (8.19) 

For the case of a crystal this definition can be modified to 

DL (r, t) = e(CO). E(r, t) (8.20) 

which includes a real frequency-dependent dielectric tensor. Using Eq. 
(8.20), the nonlinear wave equation can be restated as (Armstrong et al., 
1962) 

V X V X g(r,  t) -- _c-2  (c(CO). v2tg(r,  t) + 47rV2tPNL(r, t)) (8.21) 

where 

t) = + . . .  

PNL(r,  t) = PNL(r )e  -iwt + . . .  

(8.22) 

(8.23) 

Now, with the nonlinear wave equation established, we proceed to 
describe the process of second-harmonic generation, or frequency doubling. 
This is illustrated schematically in Fig. 8.1 and consists of the basic process 
of radiation of COl incident on a nonlinear crystal to yield collinear output 
radiation of frequency CO2--2COl. We proceed, as in Chapter 5, using the 
identity 

V x V x E = V V .  E -  V2E (8.24) 
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Figure 8.1 Optical configuration for frequency-doubling generation. 

the wave equation can be restated in scalar form as 

V 2 E m ( z ,  t) -- - c  -2 (g (OJm)V~Em(z  , t) -Jr- 47rV~Pm(z, t)) (8.25) 

After Boyd (1992), we use the following expressions for m = 2: 

Em(z, t) = Am(z)eikmze -i~mt + . . .  (8.26) 

E(z, t) = E1 (z, t) + E2(z, t) (8.27) 

Pro(z,  t ) - -  Pm(z )e - i~mt  + . . . (8.28) 

P1 (z) - 4dA2A~e i(k2-k')z (8.29) 

n2(z) - 2dA2e iklz (8.30) 

P ( z ,  t) = El  (z, t) -Jr- P2(z ,  I) (8.31) 

Following differentiation and substitution into the wave equation, the 
02A1/Oz 2 and 0 2 A 2 / 0 2 2  terms are neglected, so the coupled-amplitude 
equations can be expressed as (Boyd, 1992) 

dA , /dz - i(8"rcdco2 /kl  c2)A*l A2e -iAkz (8.32) 

d A z / d z -  i(47rdJ/k2cZ)AZe iAkz (8.33) 

where 

Ak -- 2kl - k2 

Integration of Eq. (8.33) leads to 

A2A~ - (47rd~/k2c2)2A4L 2 [ ( s in2(LAk/2) ) / (LAk/2)  2] 

(8.34) 

(8.35) 
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Figure 8.2 Optical configuration for sum-frequency generation. 

Equation (8.35) illustrates the nonlinear dependence of the frequency- 
doubled output on the input signal and indicates its relation to the (L Ak/2) 
parameter. This dependence implies that conversion efficiency decreases 
significantly as (L Ak/2) increases. The distance 

L~ = 21Ak (8.36) 

referred to as the coherence length of the crystal, provides a measure of 
the length of the crystal necessary for the efficient generation of second- 
harmonic radiation. 

Sum-frequency generation is outlined in the third term of Eq. (8.4) and 
involves the interaction of radiation at two different frequencies in a crystal 
to produce radiation at a third distinct frequency. This process, illustrated 
schematically in Fig. 8.2, consists of the normal incidence radiation of ~1 
and &2 onto a nonlinear crystal to yield collinear output radiation of fre- 
quency ~3 = w1 + ~2. Using the appropriate expressions for Em(z, t) and 
Pm(z, t) in the wave equation, it can be shown that (Boyd, 1992) 

Ak = k l -t- k2 - k3 

and the output intensity again depends on sincZ(L Ak/2). 
The ideal condition of phase matching is achieved when 

(8.37) 

A k = 0  (8.38) 

and it offers the most favorable circumstances for a high conversion effi- 
ciency. When this condition is not satisfied, there is a strong decrease in the 
efficiency of sum-frequency generation. 

8.2.2 DIFFERENCE-FREQUENCY GENERATION AND OPTICAL 
PARAMETRIC OSCILLATION 

The process of difference-frequency generation is outlined in the fourth term 
of Eq. (8.4) and involves the interaction of radiation at two different fre- 
quencies in a crystal to produce radiation at a third distinct frequency. This 
process, illustrated schematically in Fig. 8.3, consists of the normal incidence 
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Figure 8.3 Optical configuration for difference-frequency generation. 

radiation of a~l and co3 onto a nonlinear crystal to yield collinear output  
radiation of frequency co2 ~- a J3 - a)l. 

Assuming that co3 is the frequency of a high-intensity pump-laser beam, 
which remains undepleted during the excitation process, then A3 can be 
considered a constant; using an analogous approach to that adopted in the 
previous section, it is found that (Boyd, 1992) 

where 

d A 1 / d z  - i(87rd~2/kl c2)A3A~e iAt:z 
dA2 / d z  - i( 87rdaj2 /k2c2)A 3A*l eiAl~z 

d A 3 / d z  - O 

(8.39) 

(8.40) 

(8.41) 

Ak -- k3 - k2 - kl (8.42) 

If the nonlinear crystal involved in the process of frequency difference is 
deployed and properly aligned at the propagation axis of an optical reson- 
ator, as illustrated in Fig. 8.4, then the intracavity intensity can build to very 
high values. This is the essence of an optical parametr ic  oscillator (OPO). 
Early papers on OPOs are those of Giordmaine and Miller (1965), Akhma- 
nov etal .  (1966), Byer etal .  (1968), and Harris (1969). Recent reviews are 
given by Barnes (1995) and Orr et al. (1995). 

In the OPO literature, co3 is known as the p u m p  frequency, a~l as the idler 
frequency, and adZ as the signal frequency. Thus, Eq. (8.42) can be restated as 

A k  -- kp - k s  - k1 (8.43) 

M2 

Crystal 

M1 

Figure 8.4 Basic optical parametric oscillator configuration. 
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Equations (8.39) and (8.40) can be used to provide equations for the 
signal under various conditions of interest. For example, for the case when 
the initial idler intensity is zero and Ak ~ 0, it can be shown that 

, 1 , As(L)As(L ) ~ -~ As(O)As(O)(e "YL + e-'~L) 2 (8.44) 

where As(O) is the initial amplitude of the signal. Here, the parameter 7 is 
defined as (Boyd, 1992) 

7 - -  (647r2d2co2i~O2kll kslc-41ApI2) 1/2 (8.45) 

Equation (8.44) indicates that for the ideal condition of Ak ~ 0, the signal 
experiences an exponential gain as long as the pump intensity is not depleted. 

Frequency selectivity in pulsed OPOs has been studied in detail by Bros- 
nan and Byer (1979) and Barnes (1995). Wavelength tuning by angular and 
thermal means is discussed by Barnes (1995). Considering the frequency 
difference 

03 S = Cdp - -  Od I (8.46) 

and Eq. (8.43), it can be shown that for the case of Ak ,,~ 0 (Orr et al., 1995), 

,)k S ~ , )kp(n S - -  t 11 ) / (11P  - -  111) ( 8 . 4 7 )  

which illustrates the dependence of the signal wavelength on the refractive 
indices. An effective avenue to change the refractive index is to vary the angle 
of the optical axis of the crystal relative to the optical axis of the cavity, as 
indicated in Fig. 8.4. For instance, Brosnan and Byer (1979) report that 
changing this angle from 45 ~ to 49 ~ in a Nd:YAG laser-pumped LiNbO3 
OPO tunes the wavelength from ~2 lam to beyond 4 gm. The angular depen- 
dence of refractive indices in uniaxial birefringent crystals is discussed by 
Born and Wolf (1999). 

It should be mentioned that the principles discussed in Chapter 4 and 7 
can be applied toward the tuning and linewidth narrowing in OPOs. How- 
ever, there are some unique features of nonlinear crystals that should be 
considered in some detail. Central to this discussion is the issue of phase 
matching, or allowable mismatch. It is clear that a resonance condition exists 
around Ak ,,~ 0, and from Eq. (8.44) it is seen that the output signal from an 
OPO can experience a large increase when this condition is satisfied. Thus, 
Ak ~ 0 is a desirable feature. Here it should be mentioned that some authors 
define slightly differently what is known as allowable mismatch. For instance, 
Barnes (1995) defines it as 

A k =  Tr/L (8.48) 



Nonlinear Optics 165 

which is slightly broader than the definition given in Eq. (8.36). 
The discussion on frequency selectivity in OPOs benefits significantly by 

expanding Ak in a Taylor series (Barnes and Corcoran, 1976) so that 

A k  = Ako + ( O A k / O x ) A x  + (1/2!)(OZAk/OxZ)Ax 2 + . . .  

Here this process is repeated for other variables of interest 

2xk = &ko + (02xk/OO)2xO + (1/2!)(022xk/OO2)2xO 2 + . . .  

A k  = Ako + (OAk/OA)AA + (1/2!)(02Ak/OA2)AA 2 -+-... 

A k  = Ako + ( O A k / O T ) A T  +(1/2!)(02Ak/OT2)AT 2 + . . .  

(8.49) 

(8.50) 
(8.51) 
(8.52) 

Equating the first two series and ignoring the second derivatives, it is found 
that (Barnes, 1995) 

A A -  AO(OAk/OO)(OAk/OA) -1 (8.53) 

This linewidth equation shows a dependence on the beam divergence, which 
is determined by the geometrical characteristics of the pump beam and the 
geometry of the cavity. It should be noted that this equation provides an 
estimate of the intrinsic linewidth available from an OPO in the absence of 
intracavity dispersive optics or injection seeding from external sources. 
Barnes (1995) reports that for a AgGaSe 2 0 P O  pumped by a Er:YLF laser, 
the linewidth is AA = 0.0214 gm at A = 3.82 gm. 

Introduction of the intracavity dispersive techniques described in 
Chapter 7 produce much narrower emission linewidths. A dispersive OPO is 
illustrated in Fig. 8.5. For this oscillator the multiple-return-pass linewidth 
is determined by 

AA -- AOR(RMVaOa + RVa~p) -~ (8.54) 

where the various coefficients are as defined in Chapter 7. It should be 
apparent that Eq. (8.54) has its origin in 

A)k--- A0(00/0)k) -1 (8.55) 

which is a simplified version of Eq. (8.53). Hence, we have demonstrated 
a simple mathematical approach to arrive at the linewidth equation that was 
derived using geometrical arguments in Chapter 4. 

Using a dispersive cavity incorporating an intracavity etalon in a LiNbO3 
OPO excited by a Nd:YAG laser, Brosnan and Byer (1979) achieved 
a linewidth of Au = 2.25GHz. Also using a Nd:YAG-pumped LiNbO3 
OPO and a similar interferometric technique, Milton et al. (1989) achieved 
single-longitudinal-mode emission at a linewidth of Au ~ 30 MHz. 
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Figure 8.5 Dispersive optical parametric oscillator using an HMPGI grating configuration. 

A further aspect illustrated by the Taylor series expansion is that by 
equating the second and third series it is found that 

A O -  AT(OAk /OT) (OAk /O0)  -1 (8.56) 

which indicates that the beam divergence is a function of temperature, which 
should be considered when contemplating thermal tuning techniques. 
Chapter 9 includes a section on the emission performance of various OPOs. 

8.2.3 THE REFRACTIVE INDEX AS A FUNCTION OF INTENSITY 

Using a Taylor series to expand an expression for the refractive index yields 

n = no + (On/OI)I + (1/2!)(02n/012)I 2 + . . .  (8.57) 

Neglecting the second-order and higher terms, this expression reduces to 

n = no + (On/OI)I (8.58) 

where no is the normal weak-field refractive index, defined in Chapter 12 for 
various materials. The quantity (On/OI) is not dimensionless and has units 
that are the inverse of the laser intensity, or W -1 cm 2. Using polarization 
arguments this derivative can be expressed as (Boyd, 1992) 

O n l O I -  127rZx3/(nZ(a~)c) (8.59) 
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This quantity is known as the second-order index o f  refraction and is trad- 
itionally referred to as n2. Setting On/OI = n2, Eq. (8.58) can be restated in its 
usual form as 

n(~) = n0(~) + n2(~)I(~) (8.60) 

The change in refractive index as a function of laser intensity is known as the 
optical Kerr effect. For a description of the electro-optical Kerr effect, the 
reader should refer to Agrawal (1995). 

A well-known consequence of the optical Kerr effect is the phenomenon 
of self-focusing. This results from the propagation of a laser beam with a 
near-Gaussian spatial intensity profile, since, according to Eq. (8.60), the 
refractive index at the center of the beam is higher than the refractive index 
at the wings of the beam. This results in an intensity-dependent lensing 
effect, as illustrated in Fig. 8.6. 

The phenomenon of self-focusing, or intensity-dependent lensing, is 
important in ultrafast lasers or femtosecond lasers (Diels, 1990; Diels and 
Rudoph, 1996), where it gives rise to what is known as Kerr lens mode 
locking (KLM). This is applied to spatially select the high-intensity mode- 
locked pulses from the background CW lasing. This can be accomplished 
simply by inserting an aperture near the gain medium to restrict lasing to the 
central, high-intensity, portion of the intracavity beam. This technique has 
become widely used in femtosecond laser cavities. 

8.3 O P T I C A L  P H A S E  C O N J U G A T I O N  

Optical phase conjugation is a technique that is applied to correct laser beam 
distortions either intracavity or extracavity. A proof of the distortion correc- 
tion properties of phase conjugation was provided by Yariv (1977) and is 

Optical medium 

Figure 8.6 Simplified representation of self-focusing due to n = no + n2I in an optical medium 
due to propagation of a laser beam with a near-Gaussian intensity profile. 
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outlined here. Consider a propagating beam in the +z direction, represented 
by 

E(r, t) - Al (r)e -i(";t-kz) -+-... (8.61) 

and the scalar version of the nonlinear wave equation given in Eq. (8.25), 
assuming that the spatial variations of e are much larger than the optical 
wavelength. Neglecting the polarization term one can write 

(OZA1/Oz 2) + i2k(OA1/Oz) + ((eco2/c 2) - kZ)A1 - 0 (8.62) 

The complex conjugate of this equation is 

(02A*l/Oz 2) - i2k(OA*l/OZ ) + ( ( e J / c  2) - k2)A*l - 0 (8.63) 

which is the same wave equation as for a wave propagating in the - z  
direction of the form 

E(r, t) - A2(r)e -i(~t+kz) + . . .  (8.64) 

provided 

A2(r) - aA~(r) (8.65) 

where a is a constant. Here, the presence of a distorting medium is repre- 
sented by the real quantity e (Yariv, 1977). This exercise illustrates that 
a wave propagating in the reverse direction of A l(r) and whose complex 
amplitude is everywhere the complex conjugate of A l(r) satisfies the same 
wave equation satisfied by A l(r). From a practical perspective this implies 
that a phase-conjugate mirror can generate a wave propagating in reverse to 
the incident wave whose amplitude is the complex conjugate of the incident 
wave. Thus, the wavefronts of the reverse wave coincide with those of the 
incident wave. This concept is illustrated in Fig. 8.7. 

52 

E1 

Inhomogeneous PCM 
optical medium 

Figure 8.7 The concept of optical phase conjugation. 



Nonlinear Optics 169 

Figure 8.8 Basic phase-conjugated laser cavity. 

A phase-conjugated mirror (PCM), as depicted in Fig. 8.8, is generated by 
a process called degenerate four-wave mixing (DFWM), which itself depends 
on X (3) (Yariv, 1985). This process can be described by considering plane- 
wave equations of the form 

Em(r, t) - Am(r)e -i(~t-kmr) + . . .  (8.66) 

where m = 1,2, 3, 4 and k and r are vectors. Using these equations and the 
simplified equations for the four polarization terms (Boyd, 1992), 

e l  3~(3) 2 , E2E~] = [E 1E 1 -+- 2El  

P2 3X(3) 2 �9 
- -  [ g 2 g  2 n t- 2g2glg~] 

P3 - 3X(3)[2E3E1Ef + 2E3E2E~ + 2E1E2E~] 

P4 = 3X(3)[2E4E1Ef + 2E4E2E~ + 2E1E2E~] 

in the generalized wave equation 

V2Em(z, t) -- - c -2 (e(a~m) VtEm2 (z, t) + 47rVZPm(z, t)) 

(8.67a) 

(8.67b) 

(8.67c) 

(8.67d) 

ABCD matrix is given by 

A B 1 
D ) - ( 0  

which should be compared to 

A B 1 
D ) - ( 0  

0 ) (8.68) 
-1 

0)1 (8.69) 

eventually leads to expressions for the amplitudes that show that the gener- 
ated field is driven only by the complex conjugate of the input amplitude. 

An issue of practical interest is the representation of a phase-conjugated 
mirror in transfer matrix notation, as introduced in Chapter 6. This problem 
was solved by Auyeung etal. (1979), who, using the argument that the 
reflected field is the conjugate replica of the incident field, showed that the 
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for a conventional optical mirror. A well-known nonlinear material sui- 
table as a PCM is CS2 (Yariv, 1985). Fluctuations in the phase-conjugated 
signal generated by D F W M  in sodium was investigated by Kumar  e ta l .  
(1984). 

8.4 R A M A N  SHIFTING 

Stimulated Raman scattering (SRS) is an additional and very useful tool to 
extend the frequency range of fixed-frequency and tunable lasers. Also 
known as Raman shifting, SRS can be accomplished by focusing a TEM00 
laser beam onto a nonlinear medium, such as H2 (as illustrated in Fig. 8.9), 
to generate emission at a series of wavelengths above and below the wave- 
length of the laser pump. The series of longer-wavelength emissions are 
known as Stokes and are determined by (Hartig and Schmidt, 1979) 

USm = Ue -- muR (8.70) 

where us,, is the frequency of a given Stokes, ue is the frequency of the pump 
laser, uR is the intrinsic Raman frequency, and m = 1,2, 3, 4 , . . .  for succes- 
sively higher Stokes. For the series of shorter anti-Stokes wavelengths, 

UASm = Up + mug  (8.71) 

where UASm is the frequency of a given anti-Stokes. It should be noted that 
us~ and uAS~ are generated by the pump radiation, while these fields, in turn, 
generate u& and uAS2. In other words, for m = 2, 3, 4 , . . . ,  us,, and UASm are 
generated by US(m_,~ and UAS(m_~, respectively. Hence, the most intense radi- 
ation occurs for m = 1, with successively weaker emission for m = 2, 3, 4 , . . . ,  
as depicted in Fig. 8.10. For instance, efficiencies can decrease progressively 
from 37% (first Stokes), to 18% (second Stokes), to 3.5% (third Stokes) 
(Berik etal . ,  1985). For the H2 molecule, uR ~ 124.5637663THz (or 
4155 cm -1) (Bloembergen, 1967). 

m 

~'AS~R 
Figure 8.9 Optical configuration for H2 Raman shifter. The output window and the dispersing 
prism are made of CaF:. 
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Figure 8.10 Stokes and anti-Stokes emission in H2 for )~e = 500 nm. 

Using the wave equation and assuming solutions of the form 

Es(z ,  t) - A s ( z ) e  -i(~st-ksz) + . . .  

Ee(z ,  t) - Ae ( z ) e  -i(~pt-kez) + . . .  
(8.72) 

(8.73) 

it can be shown, using the fact that the Stokes polarization depends on 
X(3)EpE*pEs, that the gain at the Stokes frequency depends on the intensity 
of the pump radiation, the population density, and the inverse of the Raman 
linewidth, among other factors (Trutna and Byer, 1980). It is interesting to 
note that the Raman gain can be independent of the linewidth of the pump 
laser (Trutna et al., 1979). A detailed description on the mechanics of SRS is 
provided by Boyd (1992). 

Stimulated Raman Scattering in H2 has been widely used to extend the 
frequency range of tunable lasers, such as dye lasers. This technique was first 
demonstrated by Schmidt and Appt (1972) using room-temperature hydro- 
gen at a pressure of 200 atmospheres. This is mentioned because, though 
simple, the use of pressurized hydrogen requires stainless steel cells and 
detailed attention to safety procedures. Using a dye laser with an emission 
wavelength centered around 563 nm, Wilke and Schmidt (1978) generated 
SRS radiation in H2 from the eight anti-Stokes (at 198 nm) to the third 
Stokes (at 2064 nm) at an overall conversion efficiency of up to 50%. Using 
the second harmonic of the dye laser, the same authors generated from the 
fourth anti-Stokes to the fifth Stokes, as illustrated on Table 8.2, at an 
overall conversion efficiency of up to 75%. Using a similar dye laser config- 
uration, Hartig and Schmidt (1979) employed a capillary waveguide H2 cell 
to generate tunable first, second, and third Stokes spanning the wavelength 
range from 0.7 gm to 7 gm. 

Using a dye laser system incorporating a MPL grating oscillator and two 
stages of amplification, Schomburg et al. (1982) achieved generation up to 
the thirteenth anti Stokes at 138 nm. Brink and Proch (1982) report on a 70% 
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Anti-Stokes A range (nm) 

Table 8.2 
Tunable Raman Shifting in Hydrogen 

Tunable laser a A range (nm) 

Tunable Laser Optics 

Stokes A range (nm) b 

)k4 ~ 192 (~A4 ~ 5.8) c 
A3 ~ 210 (~"~3 ~'~ 7.2) 
A2 ~ 229 (~A2 ~ 8.9) 
A1 ~ 251 (6A1 ~ 10.7) 

275 < A < 287 309 _< A1 _< 326 
355 _< )k 2 ~ 378 
418 _< A3 < 450 
505 ~ ,~4 ~ 550 
640 _< A5 _< 711 

Source: Wilke and Schmidt (1978). 
a Second harmonic from a dye laser. 
b Approximate values. 
c Corresponds to a quoted range of 188.7 nm< )k 1 ~ 194.5 nm. All other values are approximated. 

conversion efficieny at the seventh anti Stokes by lowering the H2 tempera- 
ture to 78~ Hanna etal. (1985) report on a 90% conversion efficiency to 
the first Stokes using an oscillator-amplifier configuration for SRS in H2. 

In addition to H2, numerous materials have been characterized as SRS 
media (Bloembergen, 1967; Yariv, 1975). Other gaseous media include I2 
(Fouche and Chang, 1972), Cs (Wyatt and Cotter, 1980), Ba (Manners, 
1983), Sn and T1 (White and Henderson, 1983; Ludewigt etal., 1984), and 
Pb (Marshall and Piper, 1990). Stimulated Raman Scattering in optical 
fibers is discussed in detail by Agrawal (1995). 

8.5 APPLICATIONS OF N O N L I N E A R  OPTICS 

Perhaps the most well-known application of nonlinear optics in the field of 
laser optics is in the generation of second, third, and fourth harmonics of 
some well-established laser sources, suchs as the Nd:YAG laser. Table 8.3 
lists the laser fundamental and its three harmonics. This frequency multi- 
plication can be accomplished using nonlinear crystals, such as KDP and 
ADP. Certainly, it should be apparent that the generation of frequency 
harmonics is not limited to just the Nd:YAG laser, it is also practiced with 
a variety of laser sources, including tunable lasers. 

One application that integrates various aspects of laser optics, including 
harmonic generation, is known as optical clockwork (Holzwarth et al., 2001). 
This involves the generation of a phase-locked white-light continuum for 
absolute frequency measurements. This is an idea originally outlined by 
H~insch and colleagues in the mid- to late 1970s (Eckstein et al., 1976) but 
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Table 8.3 

Harmonics of the 4F3/2-4Ill/2 Transition of the Nd:YAG Laser 
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Fundamental Harmonics 

u ~ 2.82 x 1014 Hz (A ~ 1064 nm) 2u~ 5.64 x 1014 H z  (/~ ~ 532nm) 
3u ~ 8.46 x 1014 Hz ()~ ~ 355 nm) 
4u ~ 1.13 x 1015 Hz ()~ ~ 266nm) 

only recently has found the technological tools necessary to become signifi- 
cantly developed. 

The basic tools are a stabilized femtosecond laser, a nonlinear crystal fiber 
capable of self-modulation, a stabilized narrow-linewidth laser, and a fre- 
quency-doubling crystal. Briefly, the concept consists of generating a peri- 
odic train of pulses, also known as a comb or ruler, with each pulse separated 
by an interval A, for an entire optical octave. This is accomplished by 
focusing a high-intensity femtosecond laser beam on to a X (3) medium. This 
medium is a crystal fiber, also known as a photonic crystalf iber (PCF), whose 
refractive index behaves according to 

n(t) = no + nzZ(t) (8.74) 

Propagation in such a medium causes red spread at the leading edge of the 
pulse and a blue spread at the trailing edge of the pulse, since the field 
experiences a time-dependent shift according to (Bellini and Hfinsch, 2000) 

Aa~(t) = - ( cconzL /c ) (d I ( t ) / d t )  (8.75) 

Thus, a high-intensity ~20-fs pulse focused on a X (3) medium a few centi- 
meters long can give rise to a continuum (Holzwarth et al., 2001). 

The stabilized-frequency and broadened pulse train is made collinear with 
a narrow-linewidth stabilized laser, to be measured, and its second harmonic 
(Diddams et al., 2000). The combined laser beam containing the pulse train 
u and 2u is then dispersed by a grating, and two detectors are combined 
to determine the frequency beating between the pulse train with u and 2u, 
thus determining the beat frequencies 61 and t~ 2 (see Fig. 8.11). Following 
Diddams et al. (2000), the frequency difference is given by 

2 u -  u = nA 4- (61 4- 62) (8.76) 

where 

A = vg/ZL (8.77) 

is determined by controlling L, which is the cavity length of the stabilized 
femtosecond laser. Using this method, Diddams et al. (2000) determined 
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I J 

~ A ~  I I 

L i ~ rtA ~- 

Figure 8.11 Schematics for determining the frequency difference (2u -  u) in the optical clock- 
work. (Adapted from Diddams et al., 2000.) 

u for an 12712-stabilized Nd:YAG laser to be 281,630, 111,740 kHz, with an 
offset of + 17.2 kHz. 

This technique has led to the development of optical frequency synthesi- 
zers capable of providing an upper limit for the measurement uncertainty of 
several parts in 10 -16 (Holzwarthz etal. ,  2000). The method has also been 
extended to include other stabilized lasers and higher harmonics (Holz- 
warthz et al., 2001). 

PROBLEMS 

1. Use Maxwell's equations to derive the generalized wave equation of 
nonlinear optics, that is, Eq. (8.14). 

2. Use Eq. (8.40) to arrive at Eq. (8.44) using the approximation Ak ~ 0. 
3. Use the scalar form of the wave equation [Eq. (8.25)] to arrive at 

Eq. (8.62). 
4. Derive the linewidth equation for an OPO, that is, Eq. (8.53). 
5. Determine the wavelengths for the Stokes radiation at m = 1,2, 3 and for 

the anti-Stokes radiation at m = 1,2, 3, 4, 5 for H2, given that the laser 
excitation is at A = 600 nm. 
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