Contents lists available at SciVerse ScienceDirect

Int. Journal of Refractory Metals and Hard Materials

journal homepage: www.elsevier.com/locate/IJRMHM

Low temperature densification of B_4C ceramics with CaF_2/Y_2O_3 additives

Changming Xu^{a,b,*}, Katarina Flodström^b, Saeid Esmaeilzadeh^b

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China ^b Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden

ARTICLE INFO

Article history: Received 20 May 2012 Accepted 27 June 2012

Keywords: Boron carbide Low temperature Spark plasma sintering CaF₂/Y₂O₃

ABSTRACT

This study deals with low temperature densification of boron carbide (B_4C) ceramics with combined employment of CaF_2/Y_2O_3 sintering additive and Spark Plasma Sintering (SPS) technique. It demonstrates that a small amount addition of CaF_2/Y_2O_3 has strong effect on the densification of B_4C ceramics. With 0.5–1 wt.% CaF_2/Y_2O_3 addition, nearly full-densification up to 99.1% of B_4C ceramics can be attained at a temperature as low as 1700–1750 °C.

© 2012 Elsevier Ltd. All rights reserved.

REFRACTORY METALS

1. Introduction

Boron carbide (B_4C) has a low density, high melting point, high neutron absorption cross-section, and excellent chemical resistance at room temperature. It has been widely used for abrasive and wear resistant applications, e.g., as blast nozzles, wheel dressing tools, light weight armor plates, and nuclear reactor controlling rod application [1–3].

However, the sintering of pure B_4C ceramic has been proven quite difficult, mainly due to its rigid covalent bonds of B-C, which are responsible for its intrinsically extremely low self-diffusion coefficient and high vapor pressure [4]. Pure B_4C without sintering aid addition normally reveals highly porous interconnected structure with rapidly grown grains at over 2000 °C [5]. This intrinsic characteristic makes B_4C ceramic impossible to be fully densified without external pressure or sintering additive added.

Normally, pure B_4C ceramic can be sintered to a densification level of 79–95% at 2050–2150 °C with pressure 5–40 MPa, up to the starting powder used and the sintering conditions applied [6–9]. With sintering additive used, the densification temperature can effectively be lowered down by activating ceramic particle surface through chemical reaction and/or by promoting mass transportation and particles rearrangement via liquid phase sintering, etc. It is reported that by adding solid-dissolved carbide additive (W,Ti)C with amount as high as 10–50 wt.% can lower down the sintering densification temperature of B_4C ceramics to 1850 °C [9]. Fewer amounts, 10–25 wt.%, of TiC/Mo [10], CrB₂ [11], and Al₂O₃/TiC [12],

E-mail address: charmingxu@hotmail.com (C. Xu).

similar densification can be achieved as well; however, a higher temperature of 1950 °C is in return required.

Spark plasma sintering (SPS) is a sort of relatively novel sintering technique that has been proven to be a powerful and effective tool to lower down the sintering temperature of a wide range of materials meanwhile with fairy limited grain growth within minutes time [4,5]. With SPS technique, pure B₄C ceramics with a relative density of 95% can be reached at 1850–2050 °C with 32–40 MPa pressure [13,14]. Ghosh et al. consolidated submicrometer-sized commercial B₄C powder to near theoretical densities at 1750 °C with 88 MPa pressure; however, rather limited sintering study is available from the literature [15].

In the present study, the effect of using binary additive of CaF_2/Y_2O_3 on the densification of B_4C ceramics together with the employment of SPS sintering technique is studied.

2. Experimental

Boron carbide powder (grade HS, H. C. Starck, Berlin, Germany) was used in the present study as received. According to the supplier's data, the powders have an average particle size of 1 μ m. The additives used in this work were CaF₂ (ABCR, Germany) and Y₂O₃ (grade C, H. C. Starck, Berlin). These materials were added to B₄C to give a combined weight percentages of 5, 3 and 1 and also 0.5 wt.% CaF₂ was added for comparison. By using de-ioned water as medium, the powders were blended together in a planetary ball mill (Retsch, PM 100, Germany) and ball milled at a rotary speed of 300 rpm for 1 h. The slurry was dried at ~95 °C in air for 24 h to evaporate all the water. The mixture powders were then sieved through~200 grit sieve.

All the powders, each of mass about 1.2 g, were filled into a graphite die with an inner diameter of 12 mm. The starting pressure loaded on the powders was 50 MPa and manually kept constant at \sim 58 MPa

^{*} Corresponding author at: 1295 Dingxi Road, Shanghai, 200050, P.R. China. Tel.: + 86 21 52412322; fax: + 86 21 52413122.

^{0263-4368/\$ –} see front matter 0 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijrmhm.2012.06.014

before sintering starts at approximately 1550 °C. Consequently, the pressure goes down naturally as sintering proceedings not only to allow the releasing of gaseous products during sintering but also to avoid the breaking of the die under fast heating (200 °C/min) condition, and then increased to 50 MPa in 1 min when the temperature reaches the designated soaking temperature (1700, 1750 and 1800 °C, respectively). The soaking time was 5 min in all cases. The density of the sintered bodies was measured by the Archimedes principle. The microstructure of the fracture surface was investigated by using scanning electron microscopy (SEM, JSM-7000F, JEOL, Tokyo, Japan). The phase composition was determined by powder x-ray diffraction (XRD, PIXcel, X'Pert PRO, PANalytical, Tokyo, Japan).

3. Results and discussions

3.1. Sintering behavior

Fig. 1 shows typical loading pressure and temperature profiles for B_4C ceramics added with different amount of CaF_2/Y_2O_3 (0, 1, and 5 wt.%, respectively) sintered at 1800 °C under pressure of approximately 5.6 kN (corresponding to 50 MPa). For the B_4C samples with CaF_2/Y_2O_3 added, a slight ramp in the temperature range of 1150–1450 °Ccan be found, which can be attributed to the formation of transient liquid phase [16]. This liquid formation could be assigned either to the melting of CaF_2 (with melting point of ~1420 °C) or to the formation of eutectic mixture of Y_2O_3 and CaF_2 . The loading pressure starts to drop off naturally at ~1550 °C in all cases, indicating the occurrence of sintering. With the loading pressure increased to 50 MPa (approximately same rate in all cases), the B_4C samples with addition of CaF_2/Y_2O_3 reveal rapid densification in contrast to pure B_4C sample. The rapid densification process can be completed even within the first 2 min when soaking at 1800 °C.

Fig. 2 shows the influence of both additive amount sintered at different temperatures and consolidating pressure at 1700 °C on the densification of B₄C ceramics. Fig. 2(a) shows that a small amount of 0.5– 1 wt.% CaF₂/Y₂O₃ can remarkably improve the relative density to 99.4% at 1750–1800 °C, whereas decreased with the increasing additive amount. This result is in accordant with the sintering behavior as indicated in Fig. 1. When the temperature is as low as 1700 °C, the maximum relative density is merely as high as 91.2%.

Fig. 2(b) shows that, by loading 70 MPa pressure at 1700 °C, a near-fully densification of 98.5% can be achieved for the B_4C sample added with 1 wt.% CaF₂/Y₂O₃. A slightly lower introduction, 0.5 wt.%, of CaF₂/Y₂O₃ into B_4C ceramic requires a higher pressure of 80–90 MPa to reach maximum densification (around 98.7%). However, an over-high pressure results in a remarkable declining tendency of densification when the pressure regardless the CaF₂/Y₂O₃ amount added.

Fig. 1. Sintering profiles for B₄C ceramics with various CaF₂/Y₂O₃ additions.

Fig. 2. Relative density as a function of (a) CaF_2/Y_2O_3 additive amount sintered at various temperatures with pressure of 50 MPa, and (b) the loading pressure for B_4C ceramic sintered at 1700 °C with CaF_2/Y_2O_3 addition of 0.5 wt.% and 1 wt.%, respectively.

3.2. Phase composition

Fig. 3 shows the phase composition of the B_4C sample with 5 wt.% addition of CaF_2/Y_2O_3 addition before and after sintering at 1800 °C. YBO₃, CaC_2 , and yttrofluorite ((CaF2)_{0.85}(YF3)_{0.15}) are identified as the main newly formed phases in B_4C ceramics after sintering. Actually, a white gray mass layer can also be found on the graphite die and graphite spacers in the SPS chamber after the sintering process, indicating gas releasing and subsequently depositing that occurred during the sintering process. This gaseous product could be determined as YF₃ and/or BF₃, originating either from the reaction between B_4C and Y_2O_3 or from the reaction between B_4C and CaF_2 . Obviously,

Fig. 3. XRD patterns for B_4C ceramics: (a) without and (b) with 5 wt.% CaF_2/Y_2O_3 addition sintered at 1800 °C with 50 MPa pressure, respectively.

increasing CaF_2/Y_2O_3 additive amount could result in an increased gas releasing level as more reactants were included.

During sintering process, decreasing pressure loaded on B_4C samples allows the releasing of gas(es) generated during sintering, which normally favors the driving-off of the pores from inside and thereby promoting the densification of B_4C ceramics. When sintered at 1700 °C, an appropriate pressure of 70–90 MPa helps to attain maximum relative density. However, the in situ formed gas could be entrapped in the B_4C sample with closed surface cladding with an over-high pressure applied. Similar behavior regarding the influence of mechanical pressure on the densification of B_4C ceramics during the SPS sintering process has also been reported [17].

3.3. Microstructure

Fig. 4 shows typical fracture surface observation on the B_4C samples added with various amounts of CaF_2/Y_2O_3 sintered at 1800 °C with a pressure of 50 MPa. In good agreement with the relative density results as shown in Fig. 2, pure B_4C sample without CaF_2/Y_2O_3 addition showed undensified microstructure (Fig. 4a). When the additive amount was increased to 1 wt.% (Fig. 4b), it became fully dense and the additive distributed separately throughout B_4C grains can be deduced according to the close contact of the white phase (CaF_2/Y_2O_3) and gray phase (B_4C), as pointed out by the white arrows in Fig. 4b. Due to the transgranular fracture nature of B_4C ceramic, it is a little bit difficult to recognize separated B_4C grain from its adjacent ones.

Among most of metal ions, the radius of calcium and yttrium cations $(Ca^{2+} \text{ and } Y^{3+})$ is among the smallest class that is fairly close to that of B and/or C atoms. Although the diffusion ability of B and C in B₄C ceramic is rather low, the excellent wetting between CaF₂/Y₂O₃ and B₄C allows excellent contact between CaF₂/Y₂O₃ and B₄C, which enables much high possibility for the inter-substitution or inter-diffusion of Ca²⁺/Y³⁺ ions with B/C atoms. The penetration of Ca²⁺/Y³⁺ ions into B₄C lattice at atomic/ionic level would induce the local distortion of

B₄C lattice and the consequent activation of outer fraction of B₄C grains. Subsequently, this process favors the outer transportation of B/C atoms and hence promoting the Ostwald ripening process and the sintering densification. As pointed out by the white arrows in Fig. 4d, B₄C grains show slightly rounder morphology with 3–5 wt.% CaF₂/Y₂O₃ compared with those with less CaF₂/Y₂O₃ addition. This agrees well with the deduced conclusion that liquid phase was deduced to form in a low temperature range in the samples added with CaF₂/Y₂O₃, as indicated in Fig. 1. The reaction between fluorine ion and/or oxygen ion (F⁻/O²⁻) with B₄C and the consequent reaction heat in local area and vaporization of fluoride gas(es) could promote the proceeding of the process mentioned above.

In addition, as the radius of aluminum ion (Al^{3+}) is comparable with or even smaller than Y^{3+} ion, Y_2O_3 could be replaced by Al_2O_3 and be expected to show similar or better effect in regard with the sintering densification. Actually, this has been confirmed by our unpublished.

With the additive amount increasing to 3–5 wt.%, morphology of relatively separated grains in the B₄C matrix was presented (Fig. 4c–d). During sintering, this close contact of CaF₂/Y₂O₃ additive around B₄C particles could reduce the direct contact within B₄C particles and thereby restrain the mass transportation from a B₄C particle to its adjacent ones. As a result, the densification of B₄C ceramics could be restrained. What is more, the degassing induced by the reaction between CaF₂/Y₂O₃ and B₄C or the vaporization of fluorides (BF₃ or YF₃) or CaF₂/Y₂O₃ during sintering would leave pores inside B₄C samples, remaining close to the CaF₂/Y₂O₃ additive, as pointed out by the white arrows in Fig. 4d. This process results in a declining of the densification. That could also be the reason why the sintering curve of the B₄C sample added with 5 wt.% plotted in Fig. 1 remains horizontally steady in the last 2 min at the soaking stage however with incomplete densification.

Fig. 5 represents the fracture surface of the B_4C ceramics added with 0.5 wt.% and 1 wt.% CaF₂/Y₂O₃, respectively and sintered at 1700 °C with different pressures loaded. It can be seen that, regardless of the additive amount used, B_4C ceramic can anyhow be densified by employing

Fig. 4. Typical fracture surface of B₄C samples added with different amount of CaF₂/Y₂O₃ sintered at 1800 °C with 50 MPa pressure: (a) pure B₄C, (b) 1 wt.% CaF₂/Y₂O₃, (c) 3 wt.% CaF₂/Y₂O₃, and (d) 5 wt.% CaF₂/Y₂O₃ (for (b-d): the left side is back scattering image (BSI) and the right side is scanning electron image (SEI)).

Fig. 5. Typical fractured surface of the B₄C ceramic sintered at 1700 °C: (a) 0.5 wt.% CaF_2/Y_2O_3 addition with pressure of 80 MPa and (b) 0.5 wt.% CaF_2/Y_2O_3 addition with pressure of 70 MPa.

pressure of 70–80 MPa. Compared to the samples sintered at 1800 $^{\circ}$ C (shown in Fig. 3), the sample sintered at 1700 $^{\circ}$ C in general shows a smaller grain size.

4. Conclusions

A small amount of CaF_2/Y_2O_3 is found to have a rather strong effect in regard with the densification of B₄C ceramics even at the temperature as low as 1700–1750 °C, combining with the employment of SPS sintering technique. Excellent wetting between CaF_2/Y_2O_3 and B₄C allows the easy and fast diffusion of Ca^{2+}/Y^{3+} ions with small radius into B_4C grains which could promote the mass transportation within B_4C grains. Thereby, the sintering densification could be greatly promoted. Both the reaction between CaF_2/Y_2O_3 and B_4C and the Ostwald ripening process induced by the liquid phase formation favors this process as well.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 50972152, no. 51002169, and no. 11175228) and Innovation Project of Shanghai Institute of Ceramics (no. Y11ZC7170G) are gratefully acknowledged.

References

- Li YQ, Qiu T. Oxidation behavior of boron carbide powder. Mater Sci Eng A 2007;444:184-91.
- [2] Zorzi JE, Perottoni CA, Dajornada JAH. Hardness & wear resistance of B₄C ceramics prepared with several additives. J Mater Lett 2005;9:2932-5.
- [3] Thevenot F. Boron carbide a comprehensive review. J Eur Ceram Soc 1990;6: 205-25.
- [4] Suri AK, Subramanian C, Sonber JK, Murthy TSRC. Synthesis and consolidation of boron carbide: a review. Int Mater Rev 2010;55:4–40.
- [5] Dole LS, Prochazka S, Doremus RH. Microstructural coarsening during sintering of boron carbide. J Am Ceram Soc 1989;72:958-66.
- [6] Kalandadze GI, Shalamberidze SO, Peikrishvili AB. Sintering of Boron and Boron Carbide. J Solid State Chem 2000;154:194-8.
- [7] Yamada S, Hirao K, Yamauchi Y, Kanzaki S. Mechanical and electrical properties of B₄C-CrB₂ ceramics fabricated by liquid phase sintering, Ceram Int 2003;29:299-304.
- [8] Deng J, Junlong S. Sand erosion performance of B₄C based ceramics nozzles. Int J Refract Met Hard Mater 2008;6:128-34.
- [9] Deng J, Zhou J, Feng Y, Ding Z. Microstructure and mechanical properties of hot-pressed B4C/(W, Ti)C ceramic composites. Ceram Int 2002;28:425-30.
- [10] Deng J, Junlong S. Microstructure and mechanical properties of hot-pressed B₄C/TiC/Mo ceramic composites. Ceram Int 2009;35:771-8.
- [11] Yamada S, Hirao K, Yamauchi Y, Kanzaki S. B₄C–CrB₂ composites with improved mechanical properties. J Eur Ceram Soc 2003;23:561-5.
- [12] Deng J, Junlong S. Sand erosion performance of B₄C based ceramics nozzles. Int J Refract Met Hard Mater 2008;26:128-34.
- [13] Kim KH, Chae JH, Park JS, Kim DK, Shima KB, Lee BH. Methanol washing effects on spark plasma sintering behavior and mechanical properties of B₄C ceramics. J Ceram Process Res 2007;8:238-42.
- [14] Hayun S, Kalabukhov S, Ezersky V, Dariel MP, Frage N. Microstructural characterization of spark plasma sintered boron carbide ceramics. Ceram Int 2010;36(2): 451-7.
- [15] Ghosh D, Subhash G, Sudarshan TS, Radhakrishnan R. Dynamic indentation response of fine-grained boron carbide. J Am Ceram Soc 2007;90:1850-7.
- [16] Peng H. PhD thesis. Stockholm University. 2004.
- [17] Huang SG, Vanmeensel K, Malek OJA, Biest OV, Vleugels J. Microstructure and mechanical properties of pulsed electric current sintered B₄C-TiB₂ composites. Mater Sci Eng A 2011;528:1302-9.