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A B S T R A C T

Infrared analysis of proteins and polysaccharides by the well known KBr disk technique is notoriously frustrated
and defeated by absorbed water interference in the important amide and hydroxyl regions of spectra. This
interference has too often been overlooked or ignored even when the resulting distortion is critical or even fatal,
as in quantitative analyses of protein secondary structure, because the water has been impossible to measure or
eliminate. Therefore, a new chemometric method was devised that corrects spectra of materials in KBr disks by
mathematically eliminating the water interference. A new concept termed the Beer-Lambert law absorbance
ratio (R-matrix) model was augmented with water concentration ratios computed via an exponential decay
kinetic model of the water absorption process in KBr, which rendered the otherwise indeterminate system of
linear equations determinate and thus possible to solve in a formal analytic manner. Consequently, the
heretofore baffling KBr water elimination problem is now solved once and for all. Using the new formal solution,
efforts to eliminate water interference from KBr disks in research will be defeated no longer. Resulting spectra of
protein were much more accurate than attenuated total reflection (ATR) spectra corrected using the well-
accepted Advanced ATR Correction Algorithm.

1. Introduction

For nearly seventy years, since 1947–1949, chemical research on
solid materials has depended heavily on infrared spectroscopy using
the pressed potassium bromide (KBr) disk technique [1–3]. A more
modern technique, attenuated total reflection (ATR), which has
become popular for routine analyses because of its speed and ease of
sample preparation, is being adopted for quantitative analysis in
research on solid materials despite its well known deficiencies in
accuracy as well as its unavoidably poor reproducibility. Still, for
advanced chemical research and quantitative analyses that demand
precision Fourier transform infrared (FT-IR) spectrometry, the

pressed KBr disk technique remains the method of choice and its
use has expanded widely [4–11]. Indeed, KBr is still the only
supporting medium that can be pressed into clear disks that closely
approach the crucial solid solution condition required by the Bear-
Lambert law for accurate chemometric analyses of solids. However,
quantitative FT-IR analysis of biomaterials, such as proteins and
polysaccharides, by the traditional KBr disk technique is always
compromised if not completely frustrated and defeated by interference
from absorbed water in the very important amide and hydroxyl
regions of their spectra where water bands will distort or even
obliterate these amide and hydroxyl bands. This is a major problem
that has perplexed chemists and infrared spectroscopists for over 70
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years [1–3,11]. The obstacle for quantitative FT-IR analysis of
biomaterials in real samples is the strong interference bands arising
from water absorbed by the hygroscopic KBr in sample preparation.
KBr is notorious in infrared spectroscopy because of intractable water
interference [12–19].

This interference has all too often been overlooked or ignored even
where the resulting spectral distortion is critical or even fatal, as in
quantitative analyses of protein secondary structure, because it has
been impossible to measure the water and correct for or eliminate the
interference. In addition, since the water concentration in KBr is too
minute and too impracticable to measure, known chemometric meth-
ods like the classical K-matrix, P-matrix and Q-matrix least squares
methods are rendered mathematically indeterminate for solution of
this problem [11,20]. Therefore, the true and accurate infrared spectra
of pure biomaterials in KBr are unknown and unavailable at present.
Because the amide and hydroxyl bands in proteins and polysaccharides
are increasingly being scrutinized in biochemical, environmental and
agricultural research on their conformations, secondary and tertiary
structures, intermolecular interactions, hydrogen bonding and other
effects, more precise quantitative analysis of these bands in such
biomaterials is very much needed.

Therefore, a chemometric method was recently invented that
corrects FT-IR spectra of solid biomaterials in KBr disks by mathema-
tically eliminating the absorbed water interference [11]. The method
employed the Beer-Lambert law to directly compute individual water
and solids concentrations from a system of linear chemometric
equations derived to solve the water interference problem in a rigorous
and objective way. It introduced a new concept termed the Beer-
Lambert law absorbance ratio (R-matrix) model. By combining the
model with water concentration ratios obtained from spectral peak
resolution (called deconvolution or curve fitting) of the infrared bands
affected by water absorption, the otherwise indeterminate system of
linear Beer-Lambert law equations was rendered amenable to solution.
This chemometric approach has already demonstrated its utility. The
R-matrix model plus spectral peak resolution not only made the
equations determinate, it also solved the problem from only two KBr
disk sample preparations. However, as a practical tool, this approach
has certain disadvantages and controversial assumptions which will be
discussed.

In the present work, a new and more direct approach was
discovered that augmented a further expanded R-matrix model with
water concentration ratios computed via an exponential decay kinetic
model of the water absorption process in KBr, which not only made the
otherwise indeterminate system of linear equations possible to solve
rigorously and objectively, but also more efficiently from a single KBr
disk sample preparation.

2. Theory and derivation of the R-matrix model

Consider, for example, the FT-IR spectra of a set of biomaterials
consisting of a number of different mixtures of four component
materials, as depicted in Fig. 1. The Beer-Lambert law [21–24]
assumes the infrared absorbances of the individual components in a
mixture spectrum are additive and the total absorbance is a linear
function of the component concentrations. Thus, the Beer-Lambert law
is expressed by a system of multicomponent linear equations that relate
the total absorbance (A) of a mixture at a given infrared frequency (or
wavenumber) to the concentrations (c) of its components as:

∑vm vn nmA = k c
n

p

=1 (1)

for frequencies v = 1, 2, 3, …, w; components n = 1, 2, 3, …, p; and
mixtures m = 1, 2, 3, …, q; where kvn is the absorption coefficient
(absorptivity) at frequency v of component n, and cnm is the concen-
tration of component n in mixturem. The FT-IR spectral data form a w
by q matrix of absorbances (A) which contains the spectra at w
frequencies for each of the q mixtures. A matrix of w x p absorption
coefficients (K) of the p components in each mixture at the w
frequencies is formed from known mixtures. A matrix of p × q
concentrations (C) of the p components in each of the q mixtures is
also formed when the concentrations of components in the mixtures
are known.

Expressed in matrix-vector notation, the system of equations for the
Beer-Lambert law is

K C A=vn nm vn (2)

If the example illustrated in Fig. 1 is extended to five or more
different mixtures of four components, the system has q ≥ 5, p = 4, and
w = 4, where the kvn are absorption coefficients for each of the
component concentrations cnm in mixtures having total absorbances
Avm, where the subscripts are the integer indices of the w frequencies,
p components and qmixtures as denoted above, and where q ≥ p andw
≥ p are constraints necessary for unique mathematical solution.

Thus, at the first four frequencies in infrared spectra, the absor-
bances of the first five mixtures, with four component concentrations
c11, c21, c31 and c41, are defined by the Beer-Lambert law as:

k11 c11 + k12 c21 + k13c31 + k14 c41 = A11
k21 c11 + k22 c21 + k23 c31 + k24 c41 = A21
k31 c11 + k32 c21 + k33 c31 + k34 c41 = A31
k41 c11 + k42 c21 + k43 c31 + k44 c41 = A41
k11 c12 + k12 c22 + k13 c32 + k14 c42 = A12
k21 c12 + k22 c22 + k23 c32 + k24 c42 = A22
k31 c12 + k32 c22 + k33 c32 + k34 c42 = A32
k41 c12 + k42 c22 + k43 c32 + k44 c42 = A42
k11 c13 + k12 c23 + k13 c33 + k14 c43 = A13
k21 c13 + k22 c23 + k23 c33 + k24 c43 = A23
k31 c13 + k32 c23 + k33 c33 + k34 c43 = A33
k41 c13 + k42 c23 + k43 c33 + k44 c43 = A43
k11 c14 + k12 c24 + k13 c34 + k14 c44 = A14
k21 c14 + k22 c24 + k23 c34 + k24 c44 = A24
k31 c14 + k32 c24 + k33 c34 + k34 c44 = A34
k41 c14 + k42 c24 + k43 c34 + k44 c44 = A44
k11 c15 + k12 c25 + k13c35 + k14 c45 = A15
k21 c15 + k22 c25 + k23 c35 + k24 c45 = A25
k31 c15 + k32 c25 + k33 c35 + k34 c45 = A35
k41 c15 + k42 c25 + k43 c35 + k44 c45 = A45 (3)

where c11, c21, c31 and c41 are the four component concentrations in
the first mixture, c12, c22, c32 and c42 are the concentrations in the
second mixture, c13, c23, c33 and c43 are concentrations in the third
mixture, c14, c24, c34 and c44 are concentrations in the fourth
mixture, and c15, c25, c35 and c45 are concentrations in the fifth
mixture. If there are no other components present in each mixture,
then these concentrations, expressed as weight fractions, sum to unity:

c11 + c21 + c31 + c41 = 1
c12 + c22 + c32 + c42 = 1
c13 + c23 + c33 + c43 = 1
c14 + c24 + c34 + c44 = 1
c15 + c25 + c35 + c45 = 1 (4)

When all concentrations of the components in all of the mixtures
are known, the absorption coefficients kvn for each frequency can be
calibrated by multiple linear regression using classical chemometric
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methods [23,25]. In the analysis of an unknown mixture, the absor-
bances Avm at the same frequencies are measured and the desired
concentrations cnm of the components in the mixture can be directly
calculated from kvn values obtained in prior calibration of known
mixtures.

However, for the mixtures of a single solid biomaterial and
absorbed water in KBr considered in this work, where the concentra-
tion of the solid biomaterial is unknown and the concentration of the
absorbed water is also unknown and unmeasurable, the absorption
coefficients, k, for the solids at each frequency can be calculated by the
R-matrix method conceived earlier at this laboratory [10].

If the infrared spectrum of the pure biomaterial in KBr were
available, the ratios of the absorbance bands for any two frequencies
in a given spectrum would be known (measurable) even though the
absorption coefficients kvn would be unknown. And, because the
concentrations of the pure biomaterial at any two frequencies are
identical, the absorbance ratios, rvn, for the two frequencies would be

equal to the ratios of the unknown absorption coefficients kvn as
follows

r r r r

r r r r

r r r r

r r r r

11 = k11
k11

22 = k12
k12

23 = k13
k13

24 = k14
k14

21 = k21
k11

22 = k22
k12

23 = k23
k13

24 = k24
k14

31 = k31
k11

32 = k32
k12

33 = k33
k13

34 = k34
k14

41 = k41
k11

42 = k42
k12

43 = k43
k13

44 = k44
k14 (5)

where each absorbance ratio, rvn, is the ratio of the absorbance of
component n at frequency v to the absorbance of the same component
n at the first frequency, v = 1. Thus, all absorbance band ratios are
unknown except r11 = r12 = r13 = r14 = 1 given.

Rewriting Eq. (3) in terms of these absorbance ratios, rvn, gives the
new set of absorbance

Fig. 1. FT-IR spectra of three mixtures of three components with Beer-Lambert law equations for absorbances at four frequencies.
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equations for the two selected frequencies as

r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r
r r r r

11 k11c11 + 12 k12c21 + 13 k13c31 + 14 k14c41 = A11
21 k11c11 + 22 k12c21 + 23 k13c31 + 24 k14c41 = A21
31 k11c11 + 32 k12c21 + 33 k13c31 + 34 k14c41 = A31
41 k11c11 + 42 k12c21 + 43 k13c31 + 44 k14c41 = A41
11 k11c12 + 12 k12c22 + 13 k13c32 + 14 k14c42 = A12
21 k11c12 + 22 k12c22 + 23 k13c32 + 24 k14c42 = A22
31 k11c12 + 32 k12c22 + 33 k13c32 + 34 k14c42 = A32
41 k11c12 + 42 k12c22 + 43 k13c32 + 44 k14c42 = A42
11 k11c13 + 12 k12c23 + 13 k13c33 + 14 k14c43 = A13
21 k11c13 + 22 k12c23 + 23 k13c33 + 24 k14c43 = A23
31 k11c13 + 32 k12c23 + 33 k13c33 + 34 k14c43 = A33
41 k11c13 + 42 k12c23 + 43 k13c33 + 44 k14c43 = A43
11 k11c14 + 12 k12c24 + 13 k13c34 + 14 k14c44 = A14
21 k11c14 + 22 k12c24 + 23 k13c34 + 24 k14c44 = A24
31 k11c14 + 32 k12c24 + 33 k13c34 + 34 k14c44 = A34
41 k11c14 + 42 k12c24 + 43 k13c34 + 44 k14c44 = A44
11 k11c15 + 12 k12c25 + 13 k13c35 + 14 k14c45 = A15
21 k11c15 + 22 k12c25 + 23 k13c35 + 24 k14c45 = A25
31 k11c15 + 32 k12c25 + 33 k13c35 + 34 k14c45 = A35
41 k11c15 + 42 k12c25 + 43 k13c35 + 44 k14c45 = A45

(6)

which is written in matrix form as

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

r r r r
r r r r
r r r r
r r r r

m
m
m
m

m
m
m
m

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

k11c11 k11c12 k11c13 ... k11c1
k12c21 k12c22 k12c23 ... k12c2
k13c31 k13c32 k13c33 ... k13c3
k14c41 k14c42 k14c43 ... k14c4

=
A11 A12 A13 ... A1
A21 A22 A23 ... A2
A31 A32 A33 ... A3
A41 A42 A43 ... A4 (7)

where the m = 5 or more systems of equations, at the four frequencies,
contain the same

four by four matrix R of absorbance ratios. This ratio matrix (R-
matrix) R and its determinant Det(R) are designated by different
brackets. Thus,

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

r r r r
r r r r
r r r r
r r r r

r r r r
r r r r
r r r r
r r r r

R

R

=
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

Det( ) =
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44 (8)

Provided the frequencies are selected with absorbance ratios
such that R is nonsingular, i.e., Det(R) ≠ 0, the five or more systems
of four equations in four unknowns (Eq. (7)) will be determinate
and therefore capable of being solved using Cramer's rule [26] as
follows:

k11c11 = k12c21 =

k11c12 = k12c22 =

k11c13 = k12c23 =

k11c14 = k12c24 =

k11c15 = k12c25 =

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

R R

R R

R R

R R

R R

A11 12 13 14
A21 22 23 24
A31 32 33 34
A41 42 43 44

Det ( )

11 A11 13 14
21 A21 23 24
31 A31 33 34
41 A41 43 44

Det ( )

A12 12 13 14
A22 22 23 24
A32 32 33 34
A42 42 43 44

Det ( )

11 A12 13 14
21 A22 23 24
31 A32 33 34
41 A42 43 44

Det ( )

A13 12 13 14
A23 22 23 24
A33 32 33 34
A43 42 43 44

Det ( )

11 A13 13 14
21 A23 23 24
31 A33 33 34
41 A43 43 44

Det ( )

A14 12 13 14
A24 22 23 24
A34 32 33 34
A44 42 43 44

Det ( )

11 A14 13 14
21 A24 23 24
31 A34 33 34
41 A44 43 44

Det ( )

A15 12 13 14
A25 22 23 24
A35 32 33 34
A45 42 43 44

Det ( )

11 A15 13 14
21 A25 23 24
31 A35 33 34
41 A45 43 44

Det ( ) (9)

and

k13c31 = k14c41 =

k13c32 = k14c42 =

k13c33 = k14c43 =

k13c34 = k14c44 =

k13c35 = k14c45 =

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r

R R

R R

R R

R R

R R

11 12 A11 14
21 22 A21 24
31 32 A31 34
41 42 A41 44

Det ( )

11 12 13 A11
21 22 23 A21
31 32 33 A31
41 42 43 A41

Det ( )

11 12 A12 14
21 22 A22 24
31 32 A32 34
41 42 A42 44

Det ( )

11 12 13 A12
21 22 23 A22
31 32 33 A32
41 42 43 A42

Det ( )

11 12 A13 14
21 22 A23 24
31 32 A33 34
41 42 A43 44

Det ( )

11 12 13 A13
21 22 23 A23
31 32 33 A33
41 42 43 A43

Det ( )

11 12 A14 14
21 22 A24 24
31 32 A34 34
41 42 A44 44

Det ( )

11 12 13 A14
21 22 23 A24
31 32 33 A34
41 42 43 A44

Det ( )

11 12 A15 14
21 22 A25 24
31 32 A35 34
41 42 A45 44

Det ( )

11 12 13 A15
21 22 23 A25
31 32 33 A35
41 42 43 A45

Det ( ) (10)

If the concentrations are measured as relative weights and it is
known that the weights of one or more of the four components in the
mixtures are constant while the other components vary in their
weights, this fact can be modeled into the above system of equations.
As given in this present work, the weight of only one component, c11, is
known to be constant in all of five mixtures, in which case

k c k c k c k c k c11 11 = 11 12 = 11 13 = 11 14 = 11 15 (11)

Then, all of the unknown absorption coefficients, k, can be
eliminated (cancelled out) by dividing by the corresponding absorbance
kvncnm computed from Eqs. (9) and (10). Dividing the absorbance of
one mixture by the corresponding absorbance of another mixture will
give the ratios of the concentrations of the two components in terms of
the absorbance ratios, r, for the components at the two given
frequencies. Dividing k11c11 by k11c12, which are assumed to be equal
in this example (Eq. (11)), will give

r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r

c11
c12

=

A11 12 13 14
A21 22 23 24
A31 32 33 34
A41 42 43 44
A12 12 13 14
A22 22 23 24
A32 32 33 34
A42 42 43 44

= 1

(12)
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Similarly, dividing other absorbances, such as k11c11 by k11c13 and
k11c11 by k11c13 will give

r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r

c11
c13

=

A11 12 13 14
A21 22 23 24
A31 32 33 34
A41 42 43 44
A13 12 13 14
A23 22 23 24
A33 32 33 34
A43 42 43 44

= 1

c12
c15

=

A12 12 13 14
A22 22 23 24
A32 32 33 34
A42 42 43 44
A15 12 13 14
A25 22 23 24
A35 32 33 34
A45 42 43 44

= 1

(13)

Since these are ratios of two component concentrations in the five
mixtures of this model, the following set of 10 (combinations of five
taken two at a time) concentration ratios can be computed, of which
Eqs. (12) and (13) are three members.

c11
c12

= c11
c13

= c11
c14

= c11
c15

= c12
c13

= c12
c14

= c12
c15

= c13
c14

= c13
c15

= c14
c15

= 1

(14)

These contain the necessary and sufficient information to calculate
the nine absorbance ratios, r, in Eqs. (12) and (13) from 10 different
simultaneous equations derived from Eq. (14). Thus, if the nine
absorbance band ratios, r22, r23, r24, r32, r33, r34, r42, r43, and r44
are unknown or unavailable (not measurable), they can be obtained
explicitly from this model by solving the system of 10 simultaneous
nonlinear equations in nine unknowns. For example, the first of the 10
nonlinear equations, derived by cofactor expansion of the determinants
in Eq. (12), is

On the other hand, dividing k12c21 by k12c22, which in this example
are not assumed to be equal, will give

r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r

c21
c22

=

11 A11 13 14
21 A21 23 24
31 A31 33 34
41 A41 43 44
11 A12 13 14
21 A22 23 24
31 A32 33 34
41 A42 43 44 (16)

and similarly,

r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r

r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r r

c31
c33

=

11 12 A11 14
21 22 A21 24
31 32 A31 34
41 42 A41 44
11 12 A13 14
21 22 A23 24
31 32 A33 34
41 42 A43 44

c42
c45

=

11 12 13 A12
21 22 23 A22
31 32 33 A32
41 42 43 A42
11 12 13 A15
21 22 23 A25
31 32 33 A35
41 42 43 A45 (17)

However, unlike Eqs. (12) and (13), these Eqs. (16) and (17)
contain insufficient information to calculate the absorbance ratios r21,
r31, and r41, even when r22, r23, r24, r32, r33, r34, r42, r43, and r44 are
known or obtained directly from Eq. (14), because the concentration
ratios are unknown. Therefore, the desired ratios of the absorbance
bands r21, r31, and r41 cannot be obtained explicitly by calculation
from this R-matrix model alone.

Any equivalent chemometric model that uses physical measurements of
k12c21, k22c21, k12c22, k22c22, or the other component absorbances as
external inputs will give r21, r31, and r41 explicitly. Hence, the ratios, r22,
r23, r24, r32, r33, r34, r42, r43, and r44, of absorbances at the four
frequencies would be obtained from the infrared absorbance measurements
of five or more different mixtures. However, without external measure-
ments of the variable component concentration ratios like Eqs. (16) and
(17) (c21/c22, c31/c33 and c42/c45, which are just three of 30 ((n − 1) ×
100) possible combinations in the five mixtures), or without their
absorbance equivalents, the absorbance ratios r21, r31, and r41 for the
constant component cannot be obtained. In fact, it can be proved
mathematically that without external measurement of the variable compo-
nent concentrations or their absorbances independent of the Beer-Lambert
law model, the systems of R-matrix equations (Eq. 6) are indeterminate,
i.e., each system has an infinite number of solutions because any matrix
expression of Eq. (6) is singular (Determinant of Determinant of R = 0,
whether computed analytically or numerically = 0, whether computed
analytically or numerically).

Therefore, in order to solve this system of R-matrix equations, the
unknown concentration ratios (c21/c22, c31/c32, c41/c42….) or their

absorbance equivalents must be measured by methods that do not
derive solely from the Beer-Lambert law as already defined. In other
words, the unknown ratios (c21/c22, c31/c32, c41/c42, …) must be
measured from data external to the model (Eq. (6)), i.e., not from the
infrared absorbance measurements (A11, A12, A13, A21, A22, A23…) alone.

Once the unknown ratios (c21/c22, c31/c32, c41/c42 ….) are deter-
mined, their values can be substituted into Eqs. (16) and (17) to
compute the three absorbance ratios r21, r31, and r41 directly from
three simultaneous nonlinear equations (three nonlinear equations in
three unknowns) of the nine absorbance ratios, r22, r23, r24, r32, r33,
r34, r42, r43, and r44 calculated as in Eq. (15).

For example, one of the three simultaneous nonlinear equations,
derived by cofactor expansion of the determinants in Eq. (16), is

r r r
r r r
r r r

r r r
r r r
r r r

r r r
r r r
r r r

r r r
r r r
r r r

r r r
r r r
r r r

r r r
r r r
r r r

r r r
r r r
r r r

r r r
r r r
r r r

c11
c12

=

A11
22 23 24
32 33 34
42 43 44

− A21
12 13 14
32 33 34
42 43 44

+ A31
12 13 14
22 23 24
42 43 44

− A41
12 13 14
22 23 24
32 33 34

A12
22 23 24
32 33 34
42 43 44

− A22
12 13 14
32 33 34
42 43 44

+ A32
12 13 14
22 23 24
42 43 44

− A42
12 13 14
22 23 24
32 33 34

= 1

(15)
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r r r
r r r
r r r

c21
c22

*
=

−A11
21 23 24
31 33 34
41 43 44

+ A21
11 13 14
31 33 34
41 43 44

− A31
11 13 14
21 23 24
41 43 44

+ A41
11 13 14
21 23 24
31 33 34

−A12
21 23 24
31 33 34
41 43 44

+ A22
11 13 14
31 33 34
41 43 44

− A32
11 13 14
21 23 24
41 43 44

+ A42
11 13 14
21 23 24
31 33 34

(18)
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where (c21/c22)* is measured from data external to the model (Eq. (6)).
The solution described above for the four component model (Eqs.

(16) and (18)) can be extended to higher dimension models or reduced
to lower dimensions as needed. The simplest alternative model with
only two components (one solid and one water), which was derived
previously [11], has no interactions or cross-products of any of the
variables, so the solutions are the two linear equations

⎛
⎝⎜

⎞
⎠⎟= = 1 and c21

c22

*
=r

r
r
r

c11
c12

A21 − 22A11
A22 − 22A12

21A11 − A21
21A12 − A22 (19)

2.1. Theory and derivation of the exponential decay model

According to early studies, water is retained in KBr disks in three types
[15]. The three modes of these water vibrations appear in FT-IR spectra as
three overlapping absorbance bands in the OH stretching region as
confirmed from second derivative spectra [11]. It was observed, in two
independent studies, that the magnitudes of these water bands in KBr
decrease over time [11,15]. In the early work, isothermal desorption of
water from KBr disks was measured by monitoring the infrared absorbance
of the water over time. Various kinetic equations were used to examine the
kinetics of the water desorption process in KBr. Ten different kinetic
equations were studied to find a theoretical model that best described the
mechanism of the desorption process, which was determined to be a three-
dimensional diffusion mechanism in the porous structure of KBr disks [15].

In the present study, it was noticed that the decrease in the magnitude
of the water band in FT-IR spectra, observed in both studies, was essentially
exponential over time. This means the kinetics of this process, whatever the
absorption/desorption mechanism, can be best described by an exponential
decay equation. Therefore, the changes in the relative concentrations of
water in KBr disks over time can be directly measured from an exponential
decay empirical model. Therefore, in this work, isothermal measurements
on time-resolved FT-IR spectra of biomaterial samples in KBr disks were
undertaken to determine the water concentration ratios (c21/c22, c31/c32,
c41/c42 ….) needed to solve the system of R-matrix equations (Eq. 6) which,
as explained above, would otherwise be indeterminate.

If the three types of water known to exist [11,15] are present together
with a solid biomaterial in KBr disks, the FT-IR spectra will show four
overlapping absorbance bands in the OH region, three from the water OH
and one from the biomaterial OH. While the band from the solid
biomaterial remains constant over time, the three water bands will decrease
exponentially. This produces a complex triple exponential decay pattern
that is difficult to visualize graphically. Therefore, for simplicity, in Fig. 2,

the exponential decay is plotted for a theoretical solid biomaterial with only
one of the three water bands. The solution for this simplified two
component model would be Eq. (19).

As depicted in Fig. 2, the absorbance of the solid biomaterial is k11c11
which remains constant. Also, in experiments with blank KBr disks, it was
observed that some level of the water absorbance remains virtually constant
for more than a year. This component is labeled k12c21b, the absorbance of
water with concentration c21b bound in KBr permanently, for all practical
purposes. The decreasing component in Fig. 2 is the difference between the
total water and the bound water, k12(c21 − c21b), the absorbance of water
that is not permanently bound to the KBr and is free to be completely
desorbed in infinite time.

Expressed as an exponential decay equation, the sum, A1t, of these
three absorbance components at time t is

b b e tK11 c11 + K12 c21 + K12 (c21 − c21 ) = A1t(− a1 ) (20)

where the new parameter, a1, is the slope constant of the exponential
decay curve.

After this equation is fitted by nonlinear regression to FT-IR
spectral data collected from the same KBr disk over time, the relative
water concentration ratios for any two points in the time period can be
calculated as

t
t

e
e

e
e

c2 1
c2 2

= k12 c21
k12 c21

=
t

t

t

t

(− a1 1)

(− a1 2)

(− a1 1)

(− a1 2) (21)

Thus the unknown water concentration ratio (c21/c22) needed to
solve a simplified version of the R-matrix system (Eq. (6)) with two
components (one biomaterial band and one water band) can be simply
calculated from the slopes of the exponential decay curve at the times
the two spectra were taken, t1 and t2.

The four component model (one biomaterial and three water
absorbance bands) that best describes the actual desorption mechan-
ism in KBr disks is a more complex triple exponential decay expansion
of Eq. (20) that sums seven absorbance components as

b b b b e

b e b e t

k11 c11 + k12 c21 + k13 c31 + k14 c41 + k12( c21 − c21 )

+ k13( c31 − c31 ) + k14( c41 − c41 ) = A

t

t t

(− a )

(− a ) (− a )
1

1

2 3

(22)

where a1, a2 and a3 are the slope constants of the exponential decay
curves for each of the three types of water components with initial
concentrations c21, c31 and c41.

Although not as simply as in Eq. (19), it can be easily shown that
the ratio of the three water absorbance bands combined at times t1 and
t2,where ((c21+c31+c41)/(c22+c32+c42))* is measured from exponential
decay data external to the model of Eq. (6), is just the ratio of the sum
of the absorbances of the three water desorption curves calculated as

⎛
⎝⎜

⎞
⎠⎟

e e e
e e e

(c21 + c31 + c41)
(c22 + c32 + c42)

*

= k12 c21 + k13 c31 + k14 c41
k12 c21 + k13 c31 + k14 c41

t t t

t t t

(− a1 1) (− a2 1) (− a3 1)

(− a1 2) (− a2 2) (− a3 2)

(23)

where the absorbance terms k12c21, k13c31 and k14c41 as well as the
slope constants a1, a2 and a3 are obtained as fitted parameters in the
nonlinear regression of Eq. (22), which is a ten-parameter expansion of
Eq. (20). This nonlinear regression is tightly constrained to the
conditions and imperatives of the R-matrix model defined above so
that of the ten fitted parameters only the three slope constants a1, a2
and a3 are actually unconstrained (free to be any positive values > 0).
Eq. (23) can be used to compute r21, r31, and r41 directly from Eq. (19)
by taking the sum of the water absorbances combined as a single band
composed of overlapping contributions from c21, c31 and c41, and
employing the simplest reduced model of just two components [11] as
shown in Fig. 2.

Fig. 2. Exponential decay of the absorbance of a theoretical solid biomaterial with one
water band.
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Eq. (23) is useful to measure the ratio of the three different water
absorbances individually, which will be needed in research, for
example, to advance the early findings [15] on the nature of the water
absorption/desorption mechanism in KBr. This model also provides
the ratios of the individual water concentrations (c21/c22, c31/c32, c41/
c42 ….) needed to solve the system of R-matrix equations (Eq. (6)), as in
Eqs. (16) and (17).

e
e

e
e

e
e

e
e

e
e

e
e

c21
c22

= k12 c21
k12 c21

=

c31
c32

= k13 c31
k13 c31

=

c41
c42

= k14 c41
k14 c41

=

t

t

t

t

t

t

t

t

t

t

t

t

(− a1 1)

(− a1 2)

(− a1 1)

(− a1 2)

(− a2 1)

(− a2 2)

(− a2 1)

(− a2 2)

(− a3 1)

(− a3 2)

(− a3 1)

(− a3 2) (24)

For this current study and other research made possible by the
R-matrix method, the following more complete model is presented.

Combining terms in Eq. (22) (the ten-parameter expansion of
Eq. (20)) gives the system of R-matrix - Exponential decay equations

and where k12c21, k13c31, k14c41 and k12c21b, k13c31b, k14c41b as well
as the slope constants a1, a2, a3 are obtained as fitted parameters in the
nonlinear regression of the ten-parameter Eq. (22).

Thus, the total (free + bound) absorbance ratios for the three types
of water at times t1 and t2 are

b e b e
b e b e
b e b e
b e b e
b e b e
b e b e

c21
c22

= k12(c21 + c21 − c21 )
k12(c21 + c21 − c21 )

c31
c32

= k13(c31 + c31 − c31 )
k13(c31 + c31 − c31 )

c41
c42

= k14(c41 + c41 − c41 )
k14(c41 + c41 − c41 )

t t

t t

t t

t t

tl tl

tl tl

(− a1 1) (− a1 1)

(− a1 2) (− a1 2)

(− a2 1) (− a2 1)

(− a2 2) (− a2 2)

(− a3 ) (− a3 )

(− a3 ) (− a3 ) (26)

The expanded Eq. (22) with its ten parameters is fitted to
the exponential decay FT-IR data measured at 10 or more times (t =
1,2,3,..., q ≥ 10), when there are that many different mixtures of
protein and water available in the time-resolved spectra, by least
squares minimization as follows:

∑Min e e e e

e e t

b b b

b

b

b
and all

(a0 + a4 − a5 + a6 − a7

+ a8 − a9 − a1 )
subject to these linear constraints as computed from the R−matrix model:
a0 = k11 c11 + k12 c21 + k13 c31 + k14 c41
a4 = k12 c21
a5 = k12 c21
a6 = k13 c31
a7 = k13 c31
a8 = k14 c41
a9 = k14 c41

a ≥ 0

ll t

q
t t t t

t t

a a =1

(− a1 ) (− a1 ) (− a2 ) (− a2 )

(− a3 ) (− a3 ) 2

(27)

Since it is reasonable to assume that the absorbed water binds
almost exclusively with KBr at the extremely minute levels of bioma-

terial and water in the crystalline KBr matrix, no measurable bioma-
terial-water interaction is likely in such sparse mixtures. Therefore, this
exponential decay model includes no provision for significant bioma-
terial-water interaction in KBr disks. Also, it should be noted that for
purposes of the nonlinear regression other functions of time such as
power law functions (t-a) will work equally as well as the exponential
function (e-at) used here. However, such functions do not have the kind
of useful physical meaning [15] that exponential functions provide to
the research.

3. Materials and methods

3.1. Materials

Protein, vital wheat gluten, which consists of two major fractions,
glutenin and gliadin, was obtained from Sigma Chemical Co. (St. Louis,
MO). KBr was spectral grade potassium bromide, Spectrosol®, pur-
chased from Thermo Fischer Scientific, Inc. (Madison, WI).

3.2. Preparation of biomaterial samples

Protein was vacuum dried for 24 h. at 30 °C before weighing and
mixing with KBr. Samples of protein were ground to fine powders by
ball-milling (Brinkmann Instruments, Inc., Westbury, NY) in sealed
stainless steel vials under liquid nitrogen for several minutes to reach
the minimum particle size. Liquid nitrogen (− 196 °C) ball-milling
shatters the frozen glass-like biomaterial into micron-sized fragments
while preserving the original crystalline nature of the protein and
preventing chemical changes or significant disruption of the secondary
structure that would alter the infrared spectrum.

Test samples of protein in pressed KBr disks were prepared to
obtain infrared spectra of the protein with absorbed water interference.

Fig. 3. Model of exponential decay of absorbed water in KBr disk containing solid
biomaterial.
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k12c2 = k12(c21 + c21 − c21 ) for = 1, 2, 3...,

k13c3 = k13(c31 + c31 − c31 ) for = 1, 2, 3...,
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Protein was pulverized with KBr to produce water interference with the
amide I band of a typical protein. A sample of protein was pulverized in
KBr at liquid nitrogen temperature for 2 mins, a period of time that is
much longer than the 10–30 s typically used in the KBr disk prepara-
tion technique. The longer time of pulverization was necessary to
produce a strong water desorption kinetic effect in pressed KBr disks,
where infrared bands due to water absorbance decrease exponentially
over time. Also, the long pulverization time of protein and KBr at liquid
nitrogen temperature insured the pressed KBr disk would be homo-
geneous and would approach the perfectly transparent solid solution
condition required by the Beer-Lambert law. This crucial requirement
which was previously semi-empirical and intuitive has now been
confirmed on theoretical grounds in a recent and important proof
[24]. Blank KBr disks were prepared in the same way but without
protein to test the desorption kinetic effect of the absorbed water alone.

3.3. Fourier transform infrared (FT-IR) spectrometry

For analysis by FT-IR spectrometry, a sample of dried protein
(2.00 mg) was mixed with KBr (798 mg) and pulverized at liquid
nitrogen temperature in a sealed stainless steel vial containing two
stainless steel ball pestles for 2 min on a Wig-L-Bug amalgamator
(Crescent Dental Manufacturing, Lyons, IL). The vial was allowed to
warm to room temperature before 300 mg of the pulverized protein-
KBr mixture was transferred to a KBr die (Perkin-Elmer Corp.,
Norwalk, CT), evacuated 120 s and pressed for 60 s under vacuum at
110 MPa on a laboratory press (Fred S. Carver, Menominee Falls, WI).

FT-IR spectra were obtained on a Bomem Arid Zone FTIR spectro-
meter (ABB MB-Series, Houston, TX) equipped with a DTGS detector.
Time-resolved spectra were acquired in 5–10 min intervals at 4 cm−1

resolution and signal-averaged over 16 scans. Interferograms were
Fourier transformed using triangular apodization. All spectra were
baseline corrected and truncated to display only those infrared
absorbance bands that need correction for water interference by the
method proposed in this paper. All such spectral manipulations were
performed with routines provided in GRAMS AI software (Thermo
Galactic, Inc., Salem, NH). FT-IR spectral absorbance of water
measured in KBr over time is modeled in Fig. 3 to graphically illustrate
the strong water interference that forms in pressed KBr disks and how
it decreases exponentially with time.

3.4. Attenuated total reflection (ATR) spectrometry

An ATR spectrum of a sample of the same dried protein was
obtained on a Thermo Scientific (Thermo Electron Corp., Madison, WI)
NEXUS™ 470 FT-IR spectrometer using the Smart Orbit™ diamond
ATR accessory. Interferograms collected at 4 cm−1 resolution were
signal-averaged over 256 scans. The spectrum was smoothed via
Savitzky-Golay function and then baseline corrected. The smoothed
spectrum was further processed using the Advanced ATR Correction
Algorithm provided in the spectrometer software (OMNIC™ Version
6.2) to correct for the wavelength dependence of penetration depth and
refractive index dispersion and to compare with the spectrum corrected
for water interference.

3.5. Chemometric calculations

Multivariate quantitative analyses via an algorithm written by the
author (S.H. Gordon) containing Eqs. (7) through (18) were conducted
using the matrix algebra functions (add-ins) of Microsoft Excel®.
However, all of these essential matrix manipulations can be computed
much more efficiently using MATLAB® (The MathWorks, Inc., Natick,
MA). The software contains functions ideally suited for R-matrix
computations from the Beer-Lambert law models and for analyses of
protein + absorbed water spectra as four-component mixtures at four
frequencies.

3.6. Exponential decay calculations

Using a nonlinear regression algorithm implemented as a user
defined function in SigmaPlot® 10.0 (Systat Software, Inc., San Jose,
CA), Eq. (22) (the ten-parameter expansion of Eq. (20)) was fitted to
data points collected in the time-resolved FT-IR spectra of the protein
+ absorbed water mixture absorbance over 2 h time. All absorbance
measurements (A1t) in the time-resolved series of spectra were taken at
the same frequency, which in this work was the position of the hydroxyl
peak at 3340 cm−1. The algorithm was written as a weighted least
squares problem of minimizing the sum of squares of the residuals to
find the best-fit parameters, a, under the statistical assumption that the
weight factors are equal to the reciprocals of the variances of Gaussian
distributions of the measurements. Although it was not demonstrated
experimentally in this study it was proved mathematically that the ten-
parameter exponential decay model (Eq. (22)) can be reduced to only
four parameters and solved by nonlinear regression fitted over as few
as four time-resolved data points. In this work, however, the algorithm
returned the water absorbance values, k12c21, k13c31, k14c41 and
k12c21b, k13c31b, k14c41b as well as a0 and the slope constants a1, a2,
a3 as ten fitted parameters in Eq. (27).

Thus, the resulting calculations from Eq. (22) via Eq. (27) provide
estimates of the water concentration ratios, c21/c22, c31/c32, and c41/
c42, needed to compute the desired band absorbance ratios, r21, r31,
and r41, in the protein.

3.7. Correction of biomaterial spectrum for water interference

To correct the spectrum, the software program uses input of
absorbances, A11, A12, A21 and A22, at two selected frequencies (in
this case for protein, the hydroxyl peak at 3340 cm−1 and the amide I
peak at 1640 cm−1) from FT-IR spectra of the protein-KBr mixtures
measured at two different times (say, 10 min and 60 min, for example).
The program also uses input of the known protein weights, c11 = c12, in
the KBr mixtures. With this input and the total water concentration
ratios (c21+ c31+ c41)/(c22+ c32+ c42) and the absorbance ratios, r22,
r32, r42, r23, r33, r43, r24, r34 and r44 from Eq. (20) and the individual
water concentration ratios (c21/c22, c31/c32, and c41/c42) calculated
from exponential decay regression, Eq. (22), the program computes the
band absorbance ratios, (r21, r22), (r31, r32) and (r41, r42) needed to
construct the R-matrix and hence solve the system (Eq. (6)) constrain-
ing the solution to comply with the Beer-Lambert law. Thus, in the two
mixtures at the two frequencies, the absorbances due to protein, k11c11,
k21c11, k31c11, k41c11, k11c12, k21c12, k31c12, k41c12 and the absor-
bances due to water, k12c21, k22c21,, k32c21,, k42c21, k12c22, k22c22,
k32c22, k42c22, as well as the individual absorption coefficients for
protein, k11, k21, k31 and k41, are all precisely determined. Only the
absorption coefficients for water, k12 and k22, k32 and k42 at the two
frequencies remain undetermined since the absolute weights of water,
(c21,c22), (c31, c32), and (c41, c42), are unknown.

Because there is always a certain amount of error in experimental
data, the two frequency solution above will not fit the Beer-Lambert law
perfectly at the other frequencies that are also part of the model.
Therefore, any correction algorithm must include all of the other
frequencies. This is accomplished for this model by finding the best
solution to Eq. (22) which satisfies the Beer-Lambert law at all
frequencies in the model simultaneously. A search for the best solution
to Eq. (22) requires the results of Eq. (18) (the 3 protein absorbance
ratios r21, r31, and r41 and the nine water absorbance ratios, r22, r23,
r24, r32, r33, r34, r42, r43, and r44) to propagate as approximations to
the iterative solution of the equations as a nonlinear optimization
problem constrained in such a way that Beer-Lambert equations (Eq.
(25)) are always satisfied. For the exponential decay work, the models
of Eqs. (22) through (26) were computed using algorithms written by
the author (S.H. Gordon) in SigmaPlot® 10.0. A Levenberg-Marquardt
[27,28] algorithm, also implemented in SigmaPlot®, was applied to
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solve the constrained nonlinear optimization problem of Eq. (27).
However, other optimization methods, ranging from brute force,
random, stochastic algorithms to gradient search, quasi-Newton algo-
rithms [29–31], that are commercially available such as the function
(fmincon) in MATLAB® (The MathWorks, Inc., Natick, MA), will work
as well. Also, the formal analytic solution to systems like Eqs. (16)–
(18), (22) and (27) can sometimes be derived algebraically. For
example, it can be proved algebraically that equations exist to solve
the constrained nonlinear optimization problem of Eq. (27) efficiently
and robustly in as few as four fitted parameters. Potentially, this
problem can be solved by measuring only four time-resolved FT-IR
spectra on a single KBr disk. By the same exponential decay method,
the simplest alternative model in the problem of Eq. (19), can be solved
from just two time-resolved FT-IR spectra of a single KBr disk.

The exponential decay-R-matrix chemometric algorithm described
above is summarized in a flowchart (Fig. 4) which outlines the eight
main steps in the KBr water correction method.

This exponential decay-R-matrix chemometric algorithm can be
applied to the infrared absorbance bands from which only elimination
of water interference is needed, and it also can be applied across the
entire spectrum to generate absorbances that best fit the Beer-Lambert
law at all points. Using the hydroxyl peak as a pivot in the algorithm for
automatic generation of the corrected spectrum by iteration over all
frequencies, the same correction is made in all regions of the spectrum
that contain water interference.

The program returns as output the computed absorbance values for
protein and water at each frequency in each spectrum. From these
absorbance values, each selected spectrum in the time-resolved series

is corrected to eliminate the water interference in both the water OH
stretching region and the water OH bending region, where the hydroxyl
and amide I bands of biomaterials appear.

The procedure described above generates a solution that fits the
Beer-Lambert law perfectly at all selected frequencies. Once the water
ratios (c21, c22), (c31, c32), and (c41, c42) have been determined, all of
the band absorbance ratios (r21 and r22), (r31 and r32) or (r41 and r42)
for any two given frequencies can then be computed explicitly, as
separated variables, from the Beer-Lambert law (Eq. (6)). Thus, by
measuring the exponential decay of a single band (in this case the OH
stretching band) and using this band as a pivot for applying the
chemometric equations derived in this work, it is possible to obtain the
infrared spectrum of the protein in the mixture, corrected for water
interference. The resulting band profiles (band absorbance ratios) in
this corrected spectrum will be quantitative and exact at all frequen-
cies, which is crucial for subsequent analytical purposes, such as
computation of secondary structures.

4. Results and discussion

A new chemometric model based on the Beer-Lambert law for
correcting infrared spectra of biomaterials for water interference in
pressed KBr disks was derived. The equations that were derived (Eq.
(6) or its R-matrix equivalent, Eq. (9)) were proved to be mathema-
tically indeterminate for the needed water absorbance ratios r21 and
r22 unless an independent measure of the water ratio c21/c22 or its
absorbance equivalent is obtained by some means external to and
independent of the Beer-Lambert law model. Therefore, a search for an
independent measure of c21/c22 was conducted. In the previous work
[11], the independent measure was a constrained differential spectral
curve-fitting technique that gave an empirical estimate of the needed
water concentration ratio from infrared spectra of the biomaterial in
two pressed KBr disks containing different levels of absorbed water.

In that work [11], although the R-matrix model was not expanded
and generalized, the method used was similar to the method presented
here, insofar as the independent measure used in both works was
constrained by the Beer-Lambert conditions of Eq. (6). In addition, as
in earlier studies [15,32–34], both works confirm and employ the three
OH stretching bands first resolved by Malhotra et al. [15]. However, in
none of the previous or earlier work was exponential decay kinetic
modeling attempted to measure the water concentrations ratios (c21/
c22, c31/c32, and c41/c42) as was done here. The challenge of measuring
c21/c22 was accomplished using constrained differential spectral curve-
fitting which is a powerful and straightforward, albeit somewhat
arbitrary, analytical technique.

When that technique was published [11], it was believed to be the
only way to determine the water concentration ratio c21/c22 needed to
compute the absorbance ratios (r21 and r22) and correct the protein
spectrum. Other experimental techniques being investigated for deter-
mining the c21/c22 ratio were thought to be unsuccessful because the
water absorbed by pulverized KBr is not constant over time. However,
as it turns out, this variation with time is exponential and canonical in
form which is the very thing needed to obtain simultaneous data for
determination of c21/c22, c31/c32, and c41/c42 while collecting time-
resolved FT-IR spectra. It directly measures the infrared absorbance of
the infrared active water as it decreases exponentially in KBr with time.
This is particularly fortuitous since only that infrared-active portion of
the water that produces the measured infrared absorbance can properly
be analytical [11] for calculation of unambiguous c21/c22, c31/c32, and
c41/c42 ratios.

4.1. Computer simulation of spectrum with water interference

Simulated FT-IR spectra of a solid biomaterial and its mixtures with
water based on the Beer-Lambert law were generated by a computer to
test and prove the chemometric R-matrix – exponential decay model

Fig. 4. Flowchart summarizing the eight main steps of the KBr water correction method.
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and theory presented in this paper. Infrared absorbances were
computed for simulated mixtures of a solid protein and three types
of water assuming known absorption coefficients and concentrations of
the four components.

To test the validity and accuracy of the model, exact model data was
first generated by computer so that no error was present, and then the
solution algorithms were applied to determine whether they correctly
gave the solution known to be exact for the given model data. This was
done to test both the R-matrix and the exponential decay algorithms in
this work. The results showed that the exponential decay model was a
perfect fit to the data (Fig. 3), and solution algorithms reproduced the
generated model data precisely. It was shown that the solution
algorithms exactly reproduced all of the computer-generated data
(absorption coefficients and concentrations) exactly, within round-off
error of the computer arithmetic. Thus, this computer simulation,
together with the formal analytical solution already derived in the
Theory and Derivation of the Model section, proved the model and
algorithms are theoretically valid and completely accurate for spectra
that conform to the Beer-Lambert law.

Therefore, it is clear that the R-matrix and the exponential decay
algorithms conceived in this work represent a new and unobvious
solution to a long-standing chemometric problem in the spectrometry
of solid biomaterials. Consequently, because of the R-matrix - expo-
nential decay algorithms, it is now possible to extract unknown
absorption coefficients and concentrations of the multiple components
from a single sample without calibration against any external samples.

This method, which is the result that was the objective of the present
research, is summarized in the exponential decay R-matrix chemo-
metric algorithm as outlined in the flowchart (Fig. 4).

Unlike exact computer generated data, all laboratory research data
contain experimental error. Because of this error and because infrared
spectra of solid biomaterials are notorious for deviation from Beer's law
[35], the practical application of the R-matrix – exponential decay
algorithms for research on real-world data was also tested in this work.
The performance of the R-matrix - exponential decay model and
solution algorithms with data from a solid protein in KBr disks
prepared in the laboratory was tested using protein. Fig. 5 shows the
typical exponential decay of absorbed water in blank KBr disks. Fig. 6
shows the typical exponential decay of absorbed water in KBr disks
containing protein. In both Figs. 5 and 6, the exponential decay model
(Eq. (22)) was fitted to the time-resolved FT-IR data. In both cases, the
correlation coefficients were consistently high (R2 > 0.99).

One reason for this high accuracy is the validity of Eq. (22) due to
the flexibility it brings with three different exponential terms. Another
more important reason for the high accuracy is the excellent quality of
the KBr disks prepared due to the cryogenic sample preparation
technique. Protein was reduced to a fine powder with KBr in the liquid
nitrogen pulverization step. Hence, the pressed KBr disk approached a
solid solution of the protein in KBr, having particle sizes in the order of
the shortest infrared wavelengths, which gave essentially linear infra-
red absorbance that met the requirements [24] of the Beer-Lambert
law.

Spectroscopists may wonder why such a complex method is
required when simple digital subtraction of a known (reference) water
spectrum is possible. The infrared spectrometry rationale for using this
method instead of digital subtraction is fully explained in the previous
paper [11]. Suffice it to say here, simple spectral subtraction is not
applicable because one cannot know how much water absorbance to
subtract at any frequency, i.e., since neither the intensity nor the profile
of the water band in KBr is known, a method considerably more
complex than digital subtraction is needed to eliminate the water
absorbance. This definitely necessitates and validates the exponential
decay kinetic method used in this work. Part of the beauty and elegance
of this chemometric solution is the fact that it enables and uses direct
measurement of the actual unknown water absorbance in KBr in situ
and subtracts precisely that correct water absorbance measurement at
each and every frequency. Thus, this solution achieves the absolute
certainty of eliminating not just a computed estimate of the inter-
ference but the actual interfering water absorbance itself, for the first
time.

Chemometricians may also wonder why the exponential decay
kinetic method was not simply used by itself, without the Beer-
Lambert law R-matrix equations, to determine absorbances needed
to correct the spectra. The reason for this is that although exponential
decay kinetic model is pivotal, only the R-matrix chemometric equa-
tions derived in this work can yield the three critical band absorbance
ratios, r21, r31, and r41 and the nine water absorbance ratios, r22, r23,
r24, r32, r33, r34, r42, r43, and r44, that are crucial to the success of this
method. Exponential decay kinetics only yields the water absorbances
from nonlinear regression of a single infrared spectral band. This
provides no information whatsoever about the relative absorbances of
the many different bands across the entire spectrum. Without the R-
matrix chemometric solution derived in this work, simple exponential
decay kinetics of any single absorption band cannot possibly yield the
entire infrared absorbance spectrum of the biomaterial in total
compliance with the Beer-Lambert law.

Fortunately, the R-matrix-exponential decay kinetic model works
because the OH stretching band in water is very strong, reproducible
and well known to consist of only a few underlying bands. Unlike the
constrained differential spectral curve-fitting technique, which is not an
exact science and requires some arbitrary selections and decisions
about underlying bands, the exponential decay kinetics regression

Fig. 5. Experimental exponential decay of water in blank KBr disk.

Fig. 6. Typical exponential decay of absorbed water in KBr disk containing solid protein.
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technique is exact, reproducible and reliable as a measure of changes in
the single OH stretching band over time. Spectral curve fitting requires
theoretical assumptions of symmetric Gaussian/Lorentzian absorbance
bands which, although they might closely approximate real absorbance
bands, certainly contain some error. Spectral deconvolution curve
fitting also assumes the inevitable differences in absorptivities between
adjacent bands underlying the fitted curve are small and can therefore
be ignored. This assumption is controversial. Unlike spectral curve
fitting, exponential decay kinetics regression requires no such theore-
tical assumptions about band shapes or absorptivities and involves only
direct experimental measurements of true profiles of actual absorbance
band changes occurring in real time. Also, valid and reliable constraints
on the nonlinear regression process can be applied to minimize
experimental error and eliminate much uncertainty.

By normalizing the solution to the strongest and most reliable band in
the water spectrum (the OH stretching band), as was done here, the R-
matrix solution for the corrected spectrum is guaranteed to have the highest
probability of accuracy. Determination of the unknown band absorbance
ratios, r21, r31, and r41 and the water absorbance ratios, r22, r23, r24, r32,
r33, r34, r42, r43, and r44, is central to this method and the most important
result. These ratios enable generation of multiple corrected band profiles
across the entire spectrum including the amide regions in proteins. These
crucial band absorbance ratios could not have been determined without the
R-matrix-exponential decay kinetic model presented in this paper.

To demonstrate the utility of the R-matrix-exponential decay
kinetic model for biomaterials in the laboratory, the FT-IR spectrum
of a solid protein in KBr was corrected by this method. With the c21/c22
ratio determined by R-matrix-exponential decay of the OH stretching
band, the corrected spectrum was computed using the resulting r21 and
r22 band absorbance ratios as constraints. Fig. 7 shows the FT-IR
spectrum of dried protein before and after the correction. It shows that
the OH stretching (centered at 3340 cm−1) in the corrected spectrum of
protein is significantly reduced and peak-shifted due to elimination of
the interference from overlapping water OH bands. Also, the corrected
spectrum of protein reveals smaller but very significant changes in the
profile of the critical amide I band (1660 cm−1). This is the true amide I
band profile of protein required for subsequent quantitation of the
protein secondary structures [36–39] by spectral curve-fitting.

To demonstrate the full advantage and need for this R-matrix-
exponential decay correction method, the corrected KBr spectrum of
protein was compared with the corrected ATR spectrum in the Amide I
and II regions used in quantitating secondary structures of the protein
in the solid state by spectral curve-fitting. The ATR spectrum (Fig. 8)
was first corrected using the conventional and well-accepted Advanced
ATR Correction Algorithm introduced by Nunn and Nishikida [40] to
correct for the notorious band intensity distortion caused by inherent
frequency dependence of the depth of penetration and to correct for the
concomitant shifts to lower frequencies caused by refractive index
dispersion in ATR spectrometry.

In Fig. 8, the KBr spectrum corrected by the R-matrix-exponential
decay algorithm is compared with the ATR spectrum corrected by the
Advanced ATR Correction Algorithm. The corrected spectra show large
differences in the profiles of the important amide bands that will
produce large differences in the spectral curve-fitting results in
subsequent analyses of the protein secondary structure. It has been
demonstrated that virtually all of this difference consists of errors
contained in the corrected ATR spectrum, not the corrected KBr
spectrum, and that the corrected KBr spectrum of protein does not
contain significant error [11,39,41–44] or reflect the serious drawbacks
inherent to ATR spectrometry [45]. Therefore, compared to the
corrected ATR spectra, the corrected KBr spectra of the present work
are expected to be much closer to the true infrared spectra of proteins
and other solid biomaterials. Furthermore, when applied to correla-
tions between x-ray analyses and spectral curve-fitting, the R-matrix-
exponential decay method will provide a much more accurate deter-
mination of secondary and tertiary structures in solid proteins,
polysaccharides and other biomaterials than was previously possible.

5. Conclusions

A new chemometric method was devised to correct FT-IR spectra of
solid biomaterials for interference from water absorbed in the KBr disk
preparation. The correction method uses a novel R-matrix algorithm
and exponential decay desorption kinetics to free spectra of biomater-
ials from water bands in the important amide and hydroxyl regions.
The method provides more accurate quantitative infrared spectra of
components in solid biomaterials in KBr disks than was previously
possible. Its treatment of band absorbances as ratios in a matrix (R-
matrix) not only renders a multivariate system of Beer-Lambert law
equations amenable to solution, but also affords the unknown absorp-
tion coefficients of the solid component from a single KBr disk sample
that exhibits exponentially decreasing levels of absorbed water over
time. The water absorbed by or contained in KBr, which has frustrated
chemists and defeated infrared spectroscopists for more than 70 years,
no longer presents a problem. Now this problem is finally solved once
and for all. Using this current formal and uncontroversial solution,
efforts to eliminate water interference from KBr disks in research will
be defeated no longer. Infrared spectral profiles corrected by this
method are accurate and reproducible. Moreover, the new chemo-
metric method gives the pressed KBr disk technique a decided

Fig. 7. FTIR spectra of protein in KBr before (gray) and after (black) water interference
correction.

Fig. 8. Amide region of protein in KBr (black) after correction for water interference
compared with amide region of protein by ATR (gray) after refractive index correction.
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advantage over ATR for reliable quantitative secondary and tertiary
structure analyses.

The R-matrix chemometric algorithm solved with kinetic modeling
as presented here marks an important step toward valid spectrometric
analysis of many solid biomaterials in nature. Consequently, the long-
sought advancements in research methods for precise determination of
secondary and tertiary structures of solid proteins and polysaccharides
are now feasible. This breakthrough removes a major barrier to reliable
quantitative spectrometric analyses of solid biomaterials and will
enable research to obtain knowledge crucial to progress in many areas
of science.
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