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H I G H L I G H T S

• The optical properties of ITO nanowires at 2.06 μm were studied for the first time.

• The ITO material was first applied as optical switcher in the 2.06 μm region.

• The passively Q-switched Ho-doped laser based on ITO absorber was achieved.
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A B S T R A C T

Indium tin oxide (ITO), an epsilon-near-zero material in the low-dimensional family, was successfully fabricated
and first used as an optical switcher in 2.06 μm. In the Tm:fiber pumped passively Q-switched laser, a maximum
average output power of 312 mW was obtained with a shortest pulse width of 2.42 μs and a repetition rate of
20.53 kHz, corresponding to a single pulse energy and a peak power of 15.20 μJ and 6.28 W, respectively.
Results suggest that ITO is looking forward to develop into a kind of suitable saturable absorber for generation of
nanosecond pulse in solid state lasers.

1. Introduction

Solid-state pulse lasers operating in 2.1 μm spectral region have
significant applications in numerous fields such as medicine, lidar,
spectroscopy, and environmental monitoring [1–3]. Among 2.1 μm
laser materials, Ho:YLF crystals have large emission cross section, long
upper level lifetime, low quantum loss [4,5]. In addition, it can be di-
rectly in-band pumped by 1.9 μm lasers, which bring out merits of low
quantum defect and high conversion efficiency [6–8]. With the emer-
gence of high-power Tm-doped fiber lasers, efficient and stabilized
Ho:YLF pulse lasers were demonstrated [9,10]. The passively Q-swit-
ched (PQS) technology can acquire high peak power and microsecond
pulsed laser output by inserting the resonant saturable absorber (SA)
absorption characteristics of nonlinearity [11–14]. PQS of Ho:YLF la-
sers have attracted great attention owing to its simple structure and
small size. However, few papers have reported on the PQS Ho:YLF la-
sers at present [15–17].

In recent years, various low-dimensional materials have brought
new opportunities for PQS laser [18–24]. An ENZ (Ɛ~0) material, in

which the real constituent of permittivity vanishes, have drawn broad
attention from photonics communities for its potential such as large
nonlinearity, near-zero refractive index, decoupling of electricity and
magnetism, and infinite phase velocity, was first proposed in the case of
metamaterials [25–27]. Large nonlinearity is of particular interest for
the nonlinear optics and ultrafast photonics communities. ITO, one of
the ENZ materials, has lower carrier density and strong plasmonic ab-
sorption peak with broad bandwidth [28,29]. Large optical non-
linearities of ITO with large correlation refractive index and ultrafast
recovery time about 360 fs have been reported [30,31]. Besides, ITO
can support large doping levels (carrier density as large as
~1021 cm−3), enabling the ENZ region accurately to localize in the
near-infrared and mid-infrared bands [32,33]. Owning to the ad-
vantages of wide extent of saturable absorption regions, strong plas-
monic absorption peaks, and ultra-fast recovery time, ITO as SA have
several researched in 1–2 μm pulsed lasers [34–38]. As far as we know,
there is no report on the PQS performance based on ITO of Ho laser
around 2.06 μm up to now.

In this paper, we explore an ITO optical switch with excellent
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thermal stability and low insertion loss and first use it as SA in the
2.06 μm region. The in-band pumped PQS mode characteristics were
analyzed in detail. This work fully illustrates that ITO was a competitive
material as optical switch in mid-infrared pulses laser.

2. Fabrication and characteristics of ITO-SA

ITO was synthesized by carbothermal reduction method on a bor-
osilicate glass substrate with dimensions of 10 × 10 mm2, as shown in
Fig. 1(a). Its color is transparent and slightly brown. Fig. 1(b) shows the
top-view scanning electron microscopy (SEM) image of the ITO. It can
be seen that there are dense arrays of nanowires with similar size. As
shown in the side-view SEM image in Fig. 1(c), the ITO nanowire arrays
display a uniform cross section across the entire substrate. The diameter
of the ITO nanocrystals is coexistent in the range of 400–500 nm and
average diameter is 450 nm. In addition, we measured the nonlinear
saturable absorption properties of ITO by a mode-locked Tm-doped
fiber laser with a 23.6 ps pulse duration and 31 MHz repetition rate at
2000 nm. The transmittance was detected by varying intensity of the
laser seed source power. Fig. 1(d) shows resulting of ITO-SA had a
modulation depth of 21.4%. The slightly large modulation depth can
improve the damage threshold of the material and make it easy to
realize stable pulse trains.

3. Experimental setup

The experimental arrangement for the ITO-based Q-switching of
Ho:YLF laser is shown schematically in Fig. 2. The pump source was a
commercial Tm:fiber laser (TDFL01-00015) with center wavelength of
1940 nm at 22 °C and maximum power of 30 W with a line width of
0.4 nm (FWHM). A lens with a focal length of 100 mm was used to
collimate and focus the pump light into the crystal. To prevent the
return of laser to break the Tm:fiber laser, a V-shape stable optical re-
sonator was designed. The 180 mm long laser resonator comprised a

flat pumping mirror M1(T > 99% in the range 1850–1950 nm &
R > 99% in the range 2050–2150 nm), flat high-reflective mirror
M2(T > 99% in the range 1850–1950 nm & R > 99% in the range
2050–2150 nm), and plano-concave output coupler (OC) M3 with the
curvature radius of 200 mm at 1950–2150 nm. The transmittance of OC
is 3%. The Ho:YLF laser crystal has a dimension of 3 mm × 3 mm in
cross section and 10 mm in length. Both end faces of the crystal are AR
coated at 1940 and 2050 nm. The dopant concentrations of 0.5% Ho
crystal was chosen to avoid the up-conversion effect caused by high
concentration. To increase heat dissipation, the Ho:YLF crystal was
wrapped with indium foil and tightly fastened in a water-cooled Cu
billet, and the cooling water temperature (accuracy 0.1℃) was stable at
13.0 ℃. The radii of TEM00 mode on the laser crystal and SA are cal-
culated by ABCD matrix method approximately 230 and 440 μm, re-
spectively.

4. Results and discussion

The experiment was first conducted on the continuous wave (CW)
operation. When the absorbed pump power reached 346 mW, the CW
laser began to operate. The maximum output of 1.29 W was acquired
under the absorbed pump power of 2.56 W with a slope efficiency of
52.8%. The generated average output power was measured by a power
meter (30A-SH-V1, Israel). Then, we inserted ITO into the resonator by

Fig. 1. (a) Fabricated ITO sample on a glass substrate (10 × 10 mm2); (b) Top-view image of SEM; (c) Side-view image of SEM; (d) Nonlinear absorption property of
the ITO.

Fig. 2. The schematic of the experimental setup for the PQS operation.
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a high precision adjustment frame and calculated the radius of the
TEM00 mode at approximately 440 μm by ABCD matrix, which was
20 mm away from the OC. After carefully adjusting the angle and po-
sition of ITO, stable PQS operation was achieved with a maximum
output power of 312 mW. The output performances of the CW and PQS
laser are shown in Fig. 3. As shown in Fig. 3, the value of the laser
threshold increased from 346 to 587 mW, whereas the slope efficiency

decreased from 52.8% to 13.2%. The PQS laser suffered an increase of
laser threshold and a decrease of the output power. Compared with CW
operation, the reducing of output power and slope efficiency was
mainly caused by the inserting loss of SA. Maybe the slope efficiencies
are not too high due to inaccurate pump absorption. What’s more, the
fluctuation of the maximum output power was about 4.4% for 50 min
detection, as shown in inset figure. By using a Belarus MS3504i optical
spectrum analyzer, as shown in Fig. 4, the output spectra of fiber-
pumped Ho:YLF laser were measured in the both CW and PQS regimes.
Without SA, the central output wavelength of Ho:YLF laser was located
at 2065.7 nm. When the SA was inserted in the cavity, the center output
wavelength slightly shifts to 2062.8 nm. This phenomenon was possibly
caused by inserting loss of SA and characteristics of quasi-three level
laser system.
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Fig. 7. Q-switched pulse trains under absorbed pump powers of 0.8, 1, and
1.2 W;

Fig. 8. Oscilloscope display of Q-switched pulse trains at the maximum output
power.
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When the pulse trains were stabilized, the PQS operation was stu-
died in detail. The dependence of the pulse width and pulse repetition
rate versus the absorbed pump power is shown in Fig. 5. It can be seen
that with the increase of absorbed pump power, the pulse width became
narrower and repetition frequency increased. When the absorbed pump
power reached 2.56 W, the minimum pulse width was 2.42 μs and
maximum repetition rate was 20.53 kHz. Then, we calculated the peak
power and single pulse energy, and plotted curves of absorbed pump
power. As shown in Fig. 6, the maximum single pulse energy was
15.20 μJ and highest peak power was 6.28 W.

What’s more, the typical pulses trains were demonstrated with three
different absorbed pump powers, as shown in Fig. 7, which were cap-
tured by a 1-GHz digital oscilloscope (model MDO4104C, Tektronix)
and a fast photodiode detector (model ET-5000, Electro-Optics). It can
be seen clearly that the pulse width decreased with the increase of
absorbed pump power at the same time scale. As shown in Fig. 8, a
typical stable pulse profile (with the narrowest pulse width) of the PQS
laser was obtained. At absorbed pump power of 2.56 W, the beam
quality factors of PQS fiber-pumped Ho:YLF laser were measured by the
90/10 knife-edge method. The Ho laser beam was passed through a lens
with focal length of 100 mm, and the measured beam radii at different
positions were shown in Fig. 9. After fitting of measured data according
to the Gauss beam propagation equation, the beam quality factors of
PQS fiber-pumped Ho:YLF laser were calculated to be 2.37 and 2.27 in
the horizontal and vertical directions, respectively. The laser-beam
profile and the 3D light-intensity distribution, as recorded by a detector
(PH00435, Model No: NS2-Pyro/9/5-PRO, Photon), are plotted in
Fig. 9.

5. Conclusions

In summary, by exploiting the broadband and ultrafast nonlinear
optical response of ENZ material of ITO, we first successfully achieved
microsecond optical switch in the 2.06 μm region. In the in-band
pumped Ho pulse laser with ITO as the SA, the maximum average
output power and minimum pulse width were 312 mW and 2.42 μs at a
pulse repetition rate of 20.53 kHz. The results suggest the promising
potential of ITO as an efficient optical modulator for short-pulse lasers
around 2.06 μm. In the future work, by optimizing the parameters of
the ITO-SA with low modulation depth and choosing longer crystal, the
performance of PQS Ho:YLF laser will be enhanced, resulting in im-
provement of output power, pulse repetition rate and pulse width.
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