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This paper reports the growth and spectroscopic characteristics of Cr3*:CsAl(MoQ,), crystal. A
Cr3*:CsAl(MoO4), crystal with dimensions of 42 mm x 37 mm x 10mm has been successfully grown
from a flux of Cs;Mo3019 by the TSSG method. The absorption and emission spectra were investi-
gated. The absorption cross sections o, are 5.05 x 10720 cm~2 at 481 nm for the *A; — 4T, transition and
3.06 x 10-2° cm~2 at 670 nm for the A, — 4T, transition of Cr3* ions, respectively. The emission cross
section o of 4T, — #A, transition is 4.27 x 10-2° cm? at 818 nm and fluorescence lifetime is 21 jus. Based
on the absorption and emission spectra, the crystal field strength Dq, the Racah parameters B and C, the
effective phonon energy hAw and the Huang-Rhys factor S were calculated. The investigated results show
that Cr3*:CsAl(MoOy,); crystal may be regarded as a potential tunable laser crystal material.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since tunable solid-state lasers have a wide field application in
medicine, ultra short pulse generation, environment and commu-
nication, research on Cr3*-doped tunable solid-state laser in the
visible and near infrared spectrum has gained strong interest [1-5].
Recently double metals molybdate and tungstate with a general
formula MIM"(MV10,), (where M!=Na, K, Rb, Cs, M =Al, In, Sc
and MY!=Mo, W)are gaining attentions because their interesting
chemical and physical properties. The Cr3*-doped M'M!(MVY10,),
materials have currently receiving a great deal of attention due to
their interesting properties in tunable laser applications [6-16].
CsAl(Mo0y), is a member of this family of materials with P3m1
space group and cell parameters a=5.551(1)A, c=8.037(2)A [17].
It was reported that single crystals of Cr3*-doped CsAl(Mo0Q, ), were
grown using the Klevtsov method [18] by Hermanowicz [6]. How-
ever, the crystals with large size and high quality were difficulty
obtained by this method. In this paper, we report the growth of
Cr3*:CsAl(Mo0y); crystal by TSSG technique and its spectroscopic
characterization.
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2. Crystal growth

Since CsAl(MoQy), crystal melts incongruently at 715°C [19],
Cr3*-doped CsAl(MoQy,), crystals were only grown by the top seed
solution growth (TSSG) method. Cr3*-doped CsAl(MoOQ,), crys-
tals were grown from a flux of Cs;Mo3079 by the TSSG method.
In order to select the suitable composition of solution, the solu-
bility curve of CsAl(Mo0Q4), in CsAl(MoQg4);-Cs,Mo304¢ solution
was determined by means of trial seeding. The saturation tem-
peratures were determined for various compositions in a range of
60-80 mol% Cs;Mo301g by adjusting the temperature of the solu-
tion until a trial seeding showed no change in weight or surface
micro-topography after 4-5 h immersion. Fig. 1 shows the solubil-
ity curve of CsAl(MoQy); in the solution.

The crystal growth was carried out in a vertical tubular muffle
furnace with a nikel-chrome wire as the heating element. An AL-
708 controller controlled the furnace temperature and the rate of
cooling. The crystal was grown in a platinum crucible with dimen-
sions of & 60 mm x 50 mm. The starting materials with 66.7 mol%
Cs;Mo0301g and 33.3 mol% CsAl(MoO,4 ), were weighed according to
following chemical reaction equations:

Cs,CO3 +(1 — X)A]203 +xCry03 +4Mo0O3
= 2CsAly_xCrx(MoOy4), + CO, @)

Cs5CO3 +3Mo03 = Csp;Mo304g + CO, (2)


http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:wgf@ms.fjirsm.ac.cn
dx.doi.org/10.1016/j.jallcom.2009.09.076

294 G. Wang et al. / Journal of Alloys and Compounds 489 (2010) 293-296

Fig. 1. Solubility curve of CsAl(MoOy4); in CsAl(M00,),-Cs;Mo301¢ solution.

The chemicals used were Cs;CO3, Al,03 and MoO3 with 99.95%
purity and Cr,03 with 99.99% purity. The weighed materials with
1at.% Cr,03 were mixed and put into the platinum crucible. The
mixture of starting materials was kept at temperature 30°C above
the saturation temperature for 2 days to make the solution melt
completely and homogeneously. The saturation temperature of the
solution was exactly determined by repeated seeding. The crys-
tal was grown at a cooling rate of 1-2°C/day and rotated at a
rate of 4.5rpm. When the growth process was ended, the crys-
tal was drawn out of the solution surface and cooled down to
room temperature. Cr3*:CsAl(Mo0Q,), crystal with dimensions of
42 mm x 37 mm x 10 mm was obtained, as shown in Fig. 2. Dur-
ing the cooling process Cr3*:CsAl(MoO,), crystals strongly tended
towards cracking and cleaving. In CsAl(MoOQOg4), crystals, MoO4
tetrahedra and AlOg octahedra built up a [AIMo,0g~'] layer, the
[AlMo,0g~ 1] layers are perpendicular to the trigonal c-axis [17,20].
Since this layer structure of CsAl(MoOyg), crystals easily results in
cleave along the [AIMo,05~1] layer, the grown CsAl(MoOy); crys-
tals tended towards cleaving during the cooling process under
thermal stress. The cleavage plane of Cr3*:CsAl(MoOy), crystal
was determined to belong to (001) face using an YX-200 X-
ray diffraction orientating instrument. The appeared faces of the
grown crystal of Cr3*:CsAl(MoQ,), crystal were determined by the

Fig. 2. Photograph of the grown Cr3*:CsAl(MoOy); crystal.

Fig. 3. Growth morphology of Cr3*:CsAl(MoO4); crystals.

YX-200 X-ray diffraction orientating instrument, which belong to
(001), (102) and (110), respectively. Based on the structure of
CsAl(MoOQy),, the morphological scheme of CsAl(MoOQg4), crystal is
drawn by WinXMorph program [21], as shown in Fig. 3.

The Cr3* ions concentration in Cr3*:CsAl(Mo0Q,), crystal was
determined to be 2.0 at.% by ionic coupled plasma (ICP) spectrom-
etry. The distribution coefficient is defined as following formula:

_ Cr3* concentration in the crystal
" Cr3+ concentration in the initial charge

(3)

Thus, the distribution coefficient of Cr3*ion in Cr3*:CsAl(MoO4),
crystals is 2.0.

The specific heat was measured using a NETZSCH STA 449C
simultaneous thermal analyzer. Fig. 4 shows the dependence of the
specific heats of Cr3*:CsAl(MoQy,), crystals on the temperature. The
specific heat is 0.27]/gK at 50°C.

3. Spectral properties
A sample with dimensions of 5.0 mm x 5.2 mm x 1 mm was cut
from the as-grown crystal and polished for the spectral measure-

ment. The absorption spectrum at room temperature was recorded
with a PerkinElmer UV-VIS-NIR Spectrometer (Lambda-900). The

Fig. 4. Dependence of the specific heat on the temperature.
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Fig. 5. Absorption and luminescence spectra of Cr3*:CsAl(MoO,), crystal at room
temperature.

fluorescence spectrum and fluorescence lifetime were measured
using an Edinburgh Instruments FLS920 spectrophotometer with a
continuous Xe-flash lamp at room temperature.

Fig. 5 shows the absorption and luminescence spectra of
Cr3*:CsAl(Mo0Qy), crystal. The Cr3* as an active ion tends to be
incorporated into environments which are octahedrally coordi-
nated by ligands. Since in the structure of CsAl(MoO,), there is
only one kind of AlOg octahedron, the absorption spectrum of
Cr3*:CsAl(Mo0y), should be originated from one center of Cr3* ions.
The absorption spectrum consists of two broad bands, correspond-
ing to the 4A, — “T; transition of Cr3* ion and to the 4A; — *T,
transition of Cr3* ion, respectively. The absorption cross section o,
were determined using o, = /N, where « is the absorption coef-
ficient, N¢ is the concentration of Cr3* jons in Cr3*:CsAl(MoOy,),,
which is 8.56 x 101 ions/cm3. Then the absorption cross section
045 5.05 x 10720 cm~2 at 481 nm for the A, — 4T; transition and
3.06 x 10720 cm~—2 at 670 nm for the #A, — 4T, transition, respec-
tively. The peak at 738.12 nm is attributed to *A, — 2E transition of
Cr3* ion [6].

The energies of the electronic states of Cr3* ion, which are
determined by the crystal field Dq and Racah parameters B and
C. According to the Tanabe and Sugano diagram [22], a strong crys-
tal field is present when Dq/B>2.3. In this case the “T, level is
above 2E level, the R-line and its vibronic sideband is only observed.
For example, the laser action of ruby (Cr3*:Al,03) is driven by the
2E — 4A, R-line emission. When Dq/B < 2.3, the crystal field is weak.
The #T; level is below 2E level, the broad emission band of 4T, — 4A,
transition is only observed as observed for Cr:LiCAF and Cr:LiSAF
crystals. Then the 4T, level is the lower one and a broadband lumi-
nescence is observed. There are also intermediate field materials
where Dq/B ~2.3.

The strength of the crystal field Dq and Racah parameters B and
C can be obtained from the absorption. The energy separations
of the 4T; and T, states from %A, ground state are very sensi-
tive to Dq, the strength of the crystal field. The peak energy of
4A, — 4T, transition measures 10Dq, i.e. 10Dq = E,(%T; ). The energy
at the peak of the A, — T, band depends on the both Dq and B
[22,23]. If AE is the difference in energy at peaks of the two bands,
i.e. AE=E(*T;) — Ea(*T;), then substituting the measured values of
AE=5865cm~! and Dq=1492.5cm~! into Eq. (4), determines B to
be 583.1cm~1.

B (AE/Dq)* — 10(AE/Dq)

Dq = 15(AE/DQ)—8) “)

The C can be calculated from following formula [14]:

E(2E) - 7.9B + 1.8B2/Dq
€= 3.05 )

Table 1
Energy levels of Cr3* ion in Cr3*:CsAl(MoO4 ), crystal.

Oy, group show 25*1T7; Level Energy (cm~1) Energy of relative

ground state (cm™!)

2T,(a?D,b?D,2F2G2H) € —6,437 20,219
t2(Ty)e 1,661 28,317
t2(1Ty)e 10,243 36,899
te2(1A) 35,874 62,530
te2('E) 18,079 44,735
2T4(?P,%F,2G,>H) & —12,630 14,026
23Ty )e 6,099 31,960
t2(1Ty)e 1,992 28,648
te2(3Az) 16,573 43,229
t,e2('E) 22,294 48,950
2E(a®D,b?D,?G,2H) t —-13,122 13,534
t2(A;)e 19,306 45,962
t2(Eq)e 3,583 29,378
e’ 38,192 64,848
4T (“P,4F) t2(Ty)e —5,867 20,789
©e?(CAz) 6,075 32,731
4T, (4F) t2(3Ty)e -11,731 14,925
2A1(3G) t2("Eq)e -201 26,455
2A>(’F) t2('Eq)e 11,461 38,117
4Ay(*F) & —26,656 0

Using the value E(2E)=13,548 cm~! and the values of Dq and B,
the C was calculated to be 3066 cm—1.

The energy levels of Cr3*:CsAl(Mo0Q,), crystal can be calculated
when the values of Dq, B and C are substituted in the secular equa-
tion [24]. Then the energy levels of Cr3*:CsAl(MoQy,);, crystal are
listed in Tables 1 and 2 show the calculated values are in good agree-
ment with the experimental values for Cr3*:CsAl(MoO,), crystal.

The luminescence spectrum of Cr3*:CsAl(MoQy,), crystal excited
with 670 nm radiation at room temperature is shown in Fig. 5. The
dominant feature of luminescence of Cr3*:CsAl(MoQy,), crystal is
broad emission band with peak at 818 nm, corresponding to the
4T, —4A, transition. Dq/B=2.55> 2.3 of Cr3*:CsAl(MoOy), crystal
implies that the energy level of 4T, is higher than that of 2E, there-
fore, the line emission of 2E — “A, transition should be visible.
However, only the 4T, — 4A, transition is observed on the pho-
toluminescence spectrum at 300 K. This could be explained by the
increased thermal population of the 4T, level with increasing tem-
perature as well as by two orders of magnitude greater probability
for the 4T, — #A, transition than that for the 2E — 4A, transition to
take place [11]. These means Cr3* ions occupy intermediate crystal
field sites in Cr3*:CsAl(Mo0Q,), crystal.

The emission cross section o was determined by the following
formula [25]:

)LZ
Oe= —5—n—
¢~ 4m2tn? Av

(6)

where n is refractive index which was estimated to be 1.72 by Abbe
Refractometer at 589 nm wavelength. A is the emission wavelength,
the Av is the half-band frequency and t; is fluorescence lifetime.
The luminescence lifetime of 4T, — 4A, transition was measured
to be 21 s, as shown in Fig. 6. Then, the emission cross section oe
at 818 nm is 4.27 x 10720 cm?.

Table 2
Theory and experiment values of Cr3*:CsAl(MoQy); crystal.
Level Theory value Experiment Relative
(cm™1) values (cm™1) error (%)
2E(t3) 13,534 13,548 0.1
AT,(E(T1)e) 14,925 14,925 0
AT (E(T)e) 20,789 20,790 0.005
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Fig. 6. Luminescence decay curve of Cr3*:CsAl(MoO,); crystal at room temperature.

Having luminescence spectrum, the effective phonon energy hw
and the Huang-Rhys factor S can be obtained. For oxides the effec-
tive phonon energy can be expressed in the following equation
[26]:

0.34567'/2
} (7)

hw ~ 2.25E, [ﬁ

where E, is the peak energy absorption spectrum (A, — 4T, tran-
sition) and Ee is the peak energy of emission spectrum(4T, — %A,
transition).

The Huang-Rhys factor S is related with the difference in energy
between the absorption and emission band peaks (Stokes shift,
Es =E; — E.) by following expression [26]:

Es = 2Shw (8)

Thereupon, Es=2700cm™!, Aiw=379.9cm~! and S=3.55 can
be obtained by the experimental values of E; =14,925cm™~! and
E.=12,225cm~1. Cr3* ions in CsAl(MoOy), crystal have a stronger
coupling to the crystal lattice than that in other some fluoride crys-
tals (such as K;NaScFg, ScF3, K;NaGaFg, etc.) [26].

4. Conclusion

A Cr3*:CsAl(MoO, ), crystal with dimensions of 42 mm x 37 mm
x 10mm has been grown from a flux of Cs;Mo3019 by the
TSSG method. The solubility curve of CsAl(MoO4), in the
CsAl(Mo0Q4);-Cs;Mo304 solution was measured. The distribu-
tion coefficient of Cr3* ion in Cr3*:CsAl(MoO,), crystals is 2.0
which is over 1.0. Such large coefficient shows that the Cr3* ions
CsAl(Mo0Qy); crystal are easily incorporated into CsAl(MoQOy ), crys-
tal, but it may result in the inhomogeneous distribution of Cr3* ions
in Cr3*:CsAl(MoQy), crystal. Based on the absorption and emis-

sion spectra, the crystal field strength Dq, the Racah parameters
B and C, the effective phonon energy hw and the Huang-Rhys
parameter S were calculated: Dq=1492.5cm™!, B=583.1cm~! and
C=3066cm~!, hw=379.9cm~! and the Huang-Rhys parameter
$=3.55.The absorption cross section o3 of A, — 4Ty and 4A; — 4T,
transitions are 5.05 x 10720 cm~2 and 3.06 x 1029 cm~2, respec-
tively. The large absorption cross sections mean that is suitable for
efficient pumping with commercial laser diodes such as AlGalnP
whose emission wavelength ranges 670-690 nm. At room temper-
ature the luminescence spectrum of Cr3*:CsAl(MoOy), crystal has a
broad emission of wide tunable range (700-1200 nm) with FWHM
of 147 nm. The emission cross section oe of 4T, — %A, transition is
4.27 x 10720 cm? and fluorescence lifetime is 21 ws. In conclusion,
the investigated results show that Cr3*:CsAl(MoOy), crystal may
be regarded as a potential tunable laser crystal material.
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