

JOURNALOF NON-CRYSTALLINE SOLIDS "I Bigging Con-State of the Solid State I State of the Solid State of the Solid State I State of the Solid State of the Solid State I State of the Solid State of the Solid State of the Solid State I State of the Solid State

Journal of Non-Crystalline Solids

journal homepage: www.elsevier.com/locate/jnoncrysol

BaF_2 modified $Cr^{3\,+}/Ho^{3\,+}$ co-doped germanate glass for efficient 2.0 μm fiber lasers

X.L. Yang, W.C. Wang, Q.Y. Zhang*

State Key Laboratory of Luminescent Materials and Devices, Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641, China

ARTICLE INFO

Keywords: Cr^{3+}/Ho^{3+} co-doped Germanate glasses BaF_2 modifiers 2.0 µm fiber laser

ABSTRACT

The influence of BaF₂ on the physical and spectroscopic properties of Cr^{3+}/Ho^{3+} co-doped germanate glass is investigated systematically by differential scanning calorimeter, excitation and emission spectra, as well as dynamic decay lifetime. The intense and broad absorption band of Cr^{3+} provides a selective pump scheme for obtaining an efficient 2.0 µm emission of Ho³⁺, the OH⁻ absorption coefficient, on the other hand, is decreased as low as 1.08 cm⁻¹, which both highly conducive to obtain an intense 2.0 µm emission of Ho³⁺. In addition, the crystal-field parameter D_q/B of Cr^{3+} -doped glasses is also calculated to study the influence of BaF₂ on the local environment of activators and sensitizers. Further theoretic calculation shows that the largest absorption and emission cross-sections of Ho³⁺ near 2.0 µm are as high as 4.6 and 5.2 (×10⁻²¹ cm²) in the 10 mol% BaF₂ modified Cr^{3+}/Ho^{3+} co-doped glass and the maximum energy transfer efficiency from Cr^{3+} to Ho³⁺ is about 42.5%. All results suggest that this BaF₂ modified Cr^{3+}/Ho^{3+} co-doped glass is very suitable for a high-efficient 2.0 µm fiber lasers with flexible pump sources.

1. Introduction

In recent years, Ho³⁺ ion has gained lots of significant interest for the development of 2.0 µm solid-state fiber lasers due to its relatively higher stimulated emission cross-section, longer decay lifetime and longer laser wavelength [1,2]. However, Ho³⁺ ion suffers from a certain limitation of non-absorbing commercially available 808 nm or 980 nm laser diodes (LDs), a common approach to solving this problem is employing a series of appropriate rare-earth ion sensitizers to enhance the 2.0 μ m emission of Ho³⁺, such as Yb³⁺ [3], Tm³⁺ [4], Er³⁺ [5], and Nd^{3+} [6]. Unfortunately, the sensitizing effect of current rareearth ions is strictly defined by their narrow excitation and emission bands [7]. As an excellent sensitizer, the *d*-*d* transitions of chromium ion are intensively investigated [8-13]. For example, in our previous work [7], the various valance of chromium $(Cr^{3+}, Cr^{4+}, Cr^{6+})$ can be detected by the absorption spectra from the fluoride-sulfophosphate glasses [9]. Besides that, the Cr^{3+} and Cr^{6+} instead of Cr^{4+} have been observed in the germanate glasses [8]. It should be noted that only Cr^{3+} is beneficial for achieving efficient energy transfer process between Cr^{3+} and Ho^{3+} or Tm^{3+} ions [7,8]. The efficient 2.0 μ m fluorescence has been obtained in the Ho³⁺-doped glass sensitized by Cr³⁺, an interesting finding is that the intense and broad absorption band of Cr³⁺ provides a selective pump scheme for obtaining an intense 2.0 µm

emission of Ho^{3+} [7]. In order to explore flexible pump sources and improve the pumping efficiency for Ho^{3+} , more efforts should be performed to further study the sensitizing mechanism between Cr^{3+} and Ho^{3+} and improve their energy transfer efficiency.

On the other hand, germanate glass has been considered as a proper laser glass host for Ho^{3+} ion, which owns a lower maximum phonon energy, outstanding chemical stability, thermal stability, and excellent solubility for the rare-earth ions [14–17]. Nevertheless, it is recognized that an oxygen bridging ⁴Ge and ⁶Ge is forming a hydrogen bond with an OH⁻ group in germanate glass, which constitutes an impurity quenching center for mid-infrared luminescence [18–20]. The introduction of proper amounts of fluorides into germanate glass can transform the glass structure and suppress the OH⁻ groups simultaneously [21]. In addition, the local environment of activators and sensitizers can be influenced by the incorporation of BaF₂, which may produce a higher pump efficiency for achieving an efficient energy transfer process from Cr³⁺ to Ho³⁺.

Based on the above research backgrounds and reasons, this paper creatively studies the BaF_2 modified Cr^{3+}/Ho^{3+} co-doped germanate glass for efficient 2.0 µm fiber lasers. The influence of BaF_2 on the physical and spectroscopic properties of Cr^{3+}/Ho^{3+} co-doped germanate glass was investigated systematically by differential scanning calorimeter, excitation and emission spectra, as well as dynamic decay

E-mail address: qyzhang@scut.edu.cn (Q.Y. Zhang).

https://doi.org/10.1016/j.jnoncrysol.2017.12.031

Received 31 October 2017; Received in revised form 15 December 2017; Accepted 16 December 2017 Available online 28 December 2017 0022-3093/ © 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

lifetime. A key finding is that the excitation spectra of Cr^{3+} can be easily tailored by the incorporation of BaF₂, which ultimately makes a higher pump efficiency for achieving an efficient energy transfer process from Cr^{3+} to Ho^{3+} . In addition, the energy transfer efficiency from Cr^{3+} to Ho^{3+} is improved as high as 42.5%. All results suggest that this BaF₂ modified Cr^{3+}/Ho^{3+} co-doped glass is very suitable for a high-efficient 2.0 µm fiber lasers with flexible pump sources.

2. Experiment

The glass compositions were $(20-x)BaO-(14.9-y)Ga_2O_3-65GeO_2xBaF_2-0.1Cr_2O_3-yHo_2O_3$ (x = 0, 5, 10, 15, 20; y = 0, marked as BGG:Cr³⁺; x = 0, 5, 10, 15, 20; y = 1.0, marked as BGG:Cr³⁺, Ho³⁺, respectively). In addition, two glass samples 20BaO-15Ga_2O_3-65GeO_2 (BGG), 20BaO-14Ga_2O_3-65GeO_2-1Ho_2O_3 (BGG:Ho³⁺) were prepared as comparisons. The starting materials were extra pure anhydrous reagents of GeO_2 (Civi-Chem 99.999%), Ga_2O_3 (Aladdin, 99.99%), BaCO_3 (Aladdin, 99.99%), BaF_2 (Aladdin, 99.99%), Cr_2O_3 (Aladdin, 99.95%), and Ho_2O_3 (Aladdin, 99.99%). A batch of 15 g starting materials was completely weighed and mixed. Afterwards, the mixtures were melted in an alumina crucible covered by an alumina lid inside an electric furnace at 1350 °C for 30 min in air. Then the melts were poured into a preheated stainless steel mold and annealed at 400 °C for 2 h. The annealed specimens were well cut and polished into about 1.5 mm thickness for subsequent measurements.

Differential scanning calorimeter (STA449C/3/MFC, Germany) was conducted with N2 as protected atmosphere at a heating rate of 10 K/ min. The transmission spectra were acquired on a Vector-33 FTIR spectrometer (Bruker, Switzerland). Near-infrared (800-1700 nm) emission and excitation spectra as well as the fluorescence decay curves were measured on FLS-920 spectrometer (Edinburgh Instruments Ltd.) using a 450 W Xe lamp at 619 nm or a 150 W microsecond pulsed lamp as excitation sources, respectively, a liquid nitrogen cooled R5509-72 photomultiplier (PMT) as the detector. Photoluminescence spectra were measured on a Triax 320 type spectrofluorometer (Jobin-Yvon Corp.) fitted with an InGaAs detector (900-1500 nm) and a PbSe detector (1800-2300 nm) using an 808 nm laser diode (LD) as the irradiation source. The luminescence decay curves for 2.0 µm emission were captured by a Tektronix TDS 3012c Digital Phosphor Oscilloscope with pulsed 808 nm LD. All the measurements were carried out at room temperature.

3. Results and discussions

Glass forming region (GFR) is the basis of fabricating the barium gallo-germanate glass, which has been experimentally delivered in [22], as marked in Fig. 1(a) with blue lines. Nevertheless, many superfluous endeavors have been carried out to discover their experimental GFR and there is a critical point in finding the GFR via a more efficient way. In our previous report [23], the GFR was predicted for selecting an optimal glass composition. The calculated GFR is found at around eutectic points (T_1, T_2, T_3) , as shown in Fig. 1(a) with red lines, these points are correspondingly achieved from the points e_1 , e_2 , e_3 that are obtained on the basis of the related binary phase diagram [23]. In comparison with the calculated and the experimental GFR [22], an apparent difference comes from the discrepancies of the referred binary phase diagram data and the preparation condition [23]. The considered point 1 (composition: 20BaO-15Ga₂O₃-65GeO₂) [21] is located at both the experimental [22] and the calculated GFR, which basically signifies the glass stability of point 1. When the proper amount of BaF₂ is added in substitution of BaO, the modified glasses also keep good stability by the common melt-quenching preparation. In order to evaluate glass thermal stability, DSC curves are exploited to determine the glass characteristic temperatures such as the glass transition temperature T_{g} , glass crystallization temperature T_x and the criterion ΔT $(\Delta T = T_x - T_g)$ [14]. Fig. 2 displays the DSC spectra of BGG:Cr³⁺ with

Fig. 1. The experimental and calculated GFR of BGG glass. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 2. DSC spectra of BGG and BGG:Cr³⁺ glasses with different BaF₂ contents.

Table 1 The typical temperatures (T_g , T_x , ΔT) of BGG and BGG:Cr³⁺ glasses with different BaF₂ contents.

Glass typical temperature	BGG	0%	5%	10%	15%	20%
$T_g (°C)$ $T_x (°C)$ $\Delta T (°C)$	648	643	619	592	569	556
	738	762	734	715	694	690
	90	119	115	123	125	134

different amounts of BaF₂, the detailed values are shown in Table 1. Here, the declines of T_g and T_x are ascribed to the more loosely packed glass network with increasing BaF₂ content [21]. Besides, it is informed that ΔT values for all the Cr³⁺ doped samples are above 100 °C, confirming excellent thermal stability against crystallization [24,25]. Table 2 exhibits the basic physical properties of Cr³⁺ or/and Ho³⁺ doped glasses with different BaF₂ amounts. The more loosely packed glass network is inferred from the declines of the density and refractive index with increasing BaF₂ contents [21,26].

Fig. 3(a) depicts typical absorption bands of Ho^{3+} ions, which are

Table 2				
The basic physical properties of Cr ³⁺	or/and Ho ³⁺	doped glasses wit	h different BaF ₂	contents.

Glass	Density (g·cm ⁻³)	Average molar weight (g·mol ⁻¹)	Calculated Cr^{3+} (Ho ³⁺) concentration (10 ²⁰ cm ⁻³)	Refractive index @ 633 nm	$\alpha_{\rm OH}^{-}$ (cm ⁻¹)	N_{OH}^{-} (10 ¹⁸ cm ⁻³)
0% (Cr ³⁺)	4.631	135.5	0.411	1.710	4.04	49.50
5%	4.623	134.4	0.410	1.703	3.45	42.26
10%	4.612	133.3	0.409	1.688	2.71	33.21
15%	4.577	132.2	0.406	1.680	1.68	20.51
20%	4.557	131.1	0.404	1.668	1.17	14.36
$0\% (Cr^{3+}/Ho^{3+})$	4.680	137.5	4.096	1.712	3.88	47.62
5%	4.675	136.4	4.092	1.709	3.33	40.82
10%	4.648	135.3	4.068	1.689	2.07	25.39
15%	4.595	134.2	4.022	1.683	1.37	16.79
20%	4.566	133.1	3.996	1.669	1.08	13.28

respectively contributed to the transitions from the ground level of ⁵I₈ to the excited state levels of ⁵I₇, ⁵I₆, ⁵I₅, ⁵F₅, (⁵S₂, ⁵F₄), (⁵F₂, ³K₈, ⁵F₃), and $({}^{5}F_{1}, {}^{5}G_{6})$ [7]. The wide absorption bands of Cr^{3+} ion are apparently centered at 350, 440, and 640 nm. Bands around 440 nm and 640 nm are contributed to the transitions from the ⁴A₂ ground state to ${}^{4}T_{1}$ and ${}^{4}T_{2}$ excited states of Cr^{3+} and 350 nm band is ascribed to Cr^{6+} , respectively [7]. The lack of 1200 nm band in the absorption spectra indicates no evidence of Cr⁴⁺ in these germanate glasses [8]. Therefore, in this case, Cr³⁺ is the main valance of chromium ion and a huge potential advantage of multi-wavelength pump scheme is supported by the whole broad bands around 330–850 nm of chromium ions. Fig. 3(b) donates the transmission spectra around 1700-3200 nm of Cr³⁺-doped samples with different BaF2 contents. The OH⁻ absorption coefficient (α_{OH}^{-}) and concentration (N_{OH}^{-}) of BGG:Cr³⁺ with different BaF₂ contents are calculated [26] and displayed in Table 2. The OH⁻ coefficient is lowered as low as 1.08 cm^{-1} after introducing 20% BaF₂ due to the chemical reaction of Ge-OH and BaF₂ [18], which is lower than that of some germanate glass (3.05 cm^{-1}) [27]. The inset represents the photograph of the samples, the visually green intensity of samples is distinctly faded when the amount of BaF2 increases at 15%. The color of samples changes in relation to the absorption band-shift of Cr³⁺ in Fig. 3(c), the zoomed absorption band of Cr^{3+} : ${}^{4}T_{2}$ shows a blue shift as

the amount of BaF₂ reaches 15% due to the apparently enhanced ionic bond around Cr³⁺. Moreover, the absorption bands of Cr³⁺:⁴T₁ and ⁴T₂ with different BaF₂ contents are illustrated in Fig. 3(d). The absorption intensity of Cr³⁺:⁴T₁ is constantly reduced and the peak center of Cr³⁺:⁴T₂ shows a blue shift when the amount of BaF₂ increases at 15%. According to the Ref. [28], it has been pointed out that this absorption band shift of Cr³⁺:⁴T₂ is attributed to the spin-orbit coupling between ⁴T₂, ²E, ²T₁ excited states. When the content of BaF₂ reaches 15%, the overall excess of F⁻ and Ba²⁺ distinctly transforms the BaF₂ modified glass electronic structure where different spin multiplicities' states of Cr³⁺ are interacted [28].

Table 3 shows the absorption band positions, Racah parameters *B* and *C*, crystal-field parameter D_q/B of different Cr^{3+} doped glasses, which are calculated based on the absorption positions [12]. According to the Ref. [29] that $2.1 < D_q/B < 2.3$ distinguishes the low field from high field regions, D_q/B is slightly increased as BaF₂ content reaches 15%, which indicates that octahedral ligand field environment of Cr^{3+} is appropriately enhanced by fluorides [21]. Besides, on the basis of the $3d^3$ configuration given by Tanabe-Sugano diagram [12], the increased value of D_q/B is close to the crossing point among the field-independent ²E, ⁴T₂, and ²T₁ energy curves [8]. Here, the anion type is changing as the substitution of BaF₂ is added, F⁻ possesses a

Fig. 3. (a) Absorption spectra of Cr^{3+} -, Ho^{3+} -, and Cr^{3+}/Ho^{3+} co-doped germanate glasses (b) transmission spectra of Cr^{3+} -doped glasses (c) zoomed ${}^{4}T_{2}$ absorption band and (d) absorption spectra of Cr^{3+} -doped glasses.

Table 3

Absorption	band positions,	Racah parameters	B and C, crystal-field	d parameter D_q/B	for Cr ³⁺ in BGG:Cr ³⁺	⁺ glasses with different Bal	⁷ ₂ contents and other glass hosts.
------------	-----------------	------------------	------------------------	---------------------	--	---	---

Glass	$^{2}E (cm^{-1})$	$^{2}\text{T}_{1} \text{ (cm}^{-1}\text{)}$	$^{4}T_{2} (cm^{-1})$	${}^{4}T_{1} (cm^{-1})$	$B ({\rm cm}^{-1})$	$C ({\rm cm}^{-1})$	D_q/B	Ref.
Fluoride	14,860	15,530	15,385	23,040	850	2948	1.84	[12]
Phosphate	14,660	15,870	15,270	22,370	756	3073	2.02	[12]
0%	14,354	15,249	15,527	23,026	815	2847	1.90	This work
5%	14,354	15,249	15,527	23,026	815	2847	1.90	
10%	14,354	15,249	15,527	23,026	815	2847	1.90	
15%	14,354	15,249	15,724	23,026	777	2921	2.02	
20%	14,354	15,249	15,724	23,026	777	2921	2.02	

Table 4

Comparison of J-O parameters Ω_t (t = 2, 4, 6) of Ho³⁺ ions in various glass hosts.

Glass	$arOmega_t~(imes 10^-)$		Ref.	
	Ω_2	Ω_4	Ω_6	
Fluorophosphate	2.10	3.50	2.50	[33]
Gallate	5.70	3.10	0.37	[33]
Germanate	3.30	1.14	0.17	[33]
0%	5.75	3.18	0.92	This work
5%	5.62	3.11	0.90	
10%	5.53	3.06	0.89	
15%	5.42	3.00	0.87	
20%	5.35	2.96	0.86	

lower intensive electron density than O^{2-} does, and the larger value of D_q/B is assigned to the larger anion packing density [7].

Table 4 presents the Judd-Ofelt (J-O) parameters of Ho³⁺ doped various glasses [30,31]. Three parameters (Ω_{t} t = 2, 4, 6) appear in the order of $\Omega_2 > \Omega_4 > \Omega_6$, here, Ω_2 is related to the hypersensitive transition. The large value of Ω_2 indicates the larger line strength of the hypersensitive transition and covalency parameter of rare-earth ions [32]. Monotonically dropped Ω_2 accordingly reveals the decreased covalency around Ho³⁺ ions. The Ho-F bond is more ionic than Ho-O bond due to the higher electronegativity of F(4.0) than O(3.44), which accounts for the constantly diminished Ω_2 as the amount of BaF₂ is added [26]. The rigidity of host glass is recommended by Ω_6 , and the decreased Ω_6 indicates the reducing mechanical properties of glasses [26]. Based on the J-O parameters [32,33], the radiative transition probabilities (A_r), branching ratios (β), and radiative lifetimes (τ_r) of Ho^{3+} doped glasses are shown in Table 5. The value of A_r slightly decreases with adding the substitution of BaF₂. The A_r (81.0 s⁻¹) of 20% BaF_2 modified BGG:Cr³⁺/Ho³⁺ sample is higher than that of germanate glass (39.7 s^{-1}) [33], and gallate glass (69.5 s^{-1}) [33]. Moreover, the radiative lifetimes (τ_r) of Ho³⁺: ${}^{5}I_7 \rightarrow {}^{5}I_8$ transition are constantly prolonged with increasing the substitution of BaF2 due to the reduced

 A_r [26]. The results demonstrate that Cr^{3+}/Ho^{3+} co-doped germanate glasses modified by a proper amount of BaF₂ can be comparatively a promising candidate to achieve 2.0 µm laser output.

Fig. 4 shows the near-infrared luminescent spectra of the BGG:Cr³⁺ with different BaF₂ contents pumped by Xe lamp at 619 nm and an 808 nm LD. The broad emissions around 878 and 1000 nm are enhanced with the substitution of BaF2 added due to the diminished OHcoefficient, both of them are attributed to Cr^{3+} : ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ transition [7]. Meanwhile, Fig. 4(c) donates the normalized excitation spectra of Cr³⁺ monitored at 878 and 1000 nm. The similar excitation bands prove the same transitions from Cr^{3+} . Besides, this apparent shift of emission spectra of Cr³⁺ could be ascribed to the various excitation wavelengths of different powers and distinct photoresponse performances around the detection limit of the different detectors that R5509-72 PMT is for Xe lamp at 619 nm, InGaAs photoconductor for an 808 nm LD [7]. Besides, Fig. 4(d) donates the excitation spectra of Cr^{3+} doped glasses monitored at 878 nm with different amounts of BaF₂ added. The two broad bands around 450 and 650 nm are attributed to $\operatorname{Cr}^{3+}: {}^{4}A_{2} \rightarrow {}^{4}T_{1}$ and ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ transitions, moreover, the sensitively detected centre positions of excitation bands are constantly blueshifting due to the enhanced ionic bond as the electronegativity of F is larger than O.

Fig. 5(a) presents the near-infrared emission spectra of the BGG:Cr³⁺/Ho³⁺ with different BaF₂ contents under the excitation of an 808 nm LD. The observed emissions can be divided into two bands around 1000 and 1200 nm, which are respectively attributed to Cr³⁺: ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ and Ho³⁺: ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ transitions. Besides, the lump around 1065 nm is contributed to the harmonic light of the high-powered 808 nm laser diode. In comparison with the Ho³⁺ doped glass, there is accordingly energy transfer from Cr³⁺ to Ho³⁺: ${}^{5}I_{6}$ manifold. Besides, the radiative transitions of Cr³⁺ and Ho³⁺ are promoted by the substitution of BaF₂ due to the decreased OH⁻ coefficient. Fig. 5(b) illustrates the excitation spectra of the Ho³⁺ doped sample with different BaF₂ contents monitored at 1200 nm. The excited bands for Ho³⁺ are enhanced and broadened by Cr³⁺, which originate from being singly

Table 5

The calculated electric dipole (A_{ed}) and magnetic dipole (A_{md}) transition probabilities, spontaneous radiative transition probabilities (A_r), branching ratios (β), and the radiative lifetimes (τ_r) in BGG:Cr³⁺/Ho³⁺ with different BaF₂ contents.

Sample	Initial state	Final state	$A_{ed} (s^{-1})$	A_{md} (s ⁻¹)	$A_r (s^{-1})$	β (%)	τ_r (ms)
0%	⁵ I ₇	⁵ I ₈	60.24	31.77	92.01	100	10.87
	⁵ I ₆	⁵ I ₈	131.50		131.50	80.80	
		⁵ I ₇	15.22	16.04	31.26	19.20	6.14
5%	⁵ I ₇	⁵ I ₈	58.58	31.60	90.18	100	11.09
	⁵ I ₆	⁵ I ₈	127.87		127.87	80.61	
		⁵ I ₇	14.80	15.96	30.75	19.39	6.30
10%	⁵ I ₇	⁵ I ₈	55.60	30.51	86.10	100	11.61
	⁵ I ₆	⁵ I ₈	121.41		121.41	80.49	
		⁵ I ₇	14.03	15.40	29.44	19.51	6.63
15%	⁵ I ₇	⁵ I ₈	53.75	30.18	83.93	100	11.91
	⁵ I ₆	⁵ I ₈	117.35		117.35	80.29	
		⁵ I ₇	13.57	15.24	28.81	19.71	6.84
20%	⁵ I ₇	⁵ I ₈	51.64	29.43	81.08	100	12.33
	⁵ I ₆	⁵ I ₈	112.77		112.77	80.17	
		⁵ I ₇	13.04	14.86	27.90	19.83	7.11

Fig. 4. Emission spectra upon the excitation of (a) Xe lamp at 619 nm and (b) 808 nm LD, (c) normalized excitation spectra monitored at 878 nm and 1000 nm or (d) monitored at 878 nm in Cr^{3+} -doped glasses with different BaF_2 contents.

Fig. 5. (a) Near-infrared emission spectra (b) excitation spectra (c) mid-infrared emission spectra and (d) decay curves in $\rm Cr^{3+}/Ho^{3+}$ co-doped glasses.

confined to widely broadened ranging from 350 nm near to 800 nm. This signifies energy transfer(ET) from Cr^{3+} to Ho^{3+} and a large range of pump sources is expected to be applied. Besides, there are different phenomena of the excitation positions of Cr^{3+} and Ho^{3+} influenced by adding BaF₂. The sensitive *d*-*d* transitions of Cr^{3+} distinctly move towards the short wavelength, however, the *f*-*f* transition manifolds of

Ho³⁺ are mainly confined and populated by Cr³⁺. Fig. 5(c–d) demonstrates the luminescent spectra and the decay curves of 2.0 µm emissions in the BGG:Cr³⁺/Ho³⁺ with different BaF₂ contents. The emission band of 2.0 µm is attributed to Ho³⁺: ⁵I₇ \rightarrow ⁵I₈ transition. The largest fluorescence intensity is located at the 10% amount of BaF₂ modified sample. The result indicates that the proper amount of BaF₂ is

Fig. 6. (a) The absorption and emission cross-sections (b) estimated gain coefficients corresponding to ${\rm Ho^{3+}}$: ${\rm ^5I_7} \rightarrow {\rm ^5I_8}$ transition in BGG:Cr^{3+}/Ho^{3+} with 10% BaF_2 content.

Table 6

Spectroscopic properties of Ho^{3+} : ${}^{5}I_{7}$ level in BGG: Cr^{3+}/Ho^{3+} with 10% BaF₂ content and other glasses.

Glass	Ho^{3+} ions ($10^{20} cm^{-3}$)	λ (nm)	τ_m (ms)	FWHM (nm)	$\sigma_e^{FL} (10^{-21} \text{ cm}^2)$	FWHM $\times \sigma_e^{FL}$ (10 ⁻²⁶ cm ²)	Ref.
Fluoride	2	2035	26.70	118	5.3	6.25	[33]
Silicate	2	2040	0.32	82	7.0	5.74	[33]
Germanate	2	2045	0.36	84	4.0	3.36	[33]
Fluorophosphate	2	2035	5.60	123	7.9	9.72	[33]
10%	4	2047	2.57	175	5.2	9.10	This work

Fig. 7. Simplified energy diagram of ${\rm Cr}^{3+}/{\rm Ho}^{3+}$ co-doped glass as well as the quenching effect of ${\rm OH}^-.$

Table 7

Calculated non-radiative probabilities of ${\rm Ho^{3+:}5I_7}$ level for different amounts of ${\rm BaF_2}$ modified samples and other glasses.

Sample	ZBLAN	Silicate	0%	5%	10%	15%	20%
<i>W</i> _{nr} (s ⁻¹) Ref.	4 [37]	359 [38]	562 This w	531 ork	303	197	151

10%. Besides, the measured lifetimes (τ_m) of 2.0 µm are determined as 1.53 ms, 1.61 ms, 2.57 ms, 3.56 ms, 4.31 ms, increased with the substitution of BaF₂ added due to the diminished quenching center of OH⁻ groups.

The absorption ($\sigma_a(\lambda)$) and emission ($\sigma_e^{FL}(\lambda)$) cross-sections of Ho³⁺:2.0 µm are respectively determined by the Lambert-Beer law and Fuchtbauer-Ladenburg (FL) equation [32], as depicted in Fig. 6(a). The $\sigma_a(\lambda)$ of Ho³⁺: ⁵I₈ \rightarrow ⁵I₇ transition in BGG:Cr³⁺/Ho³⁺ with 10%

amount of BaF₂ is calculated as 4.6 \times 10⁻²¹ cm² at 1950 nm, $\sigma_e^{FL}(\lambda)$ is 5.2×10^{-21} cm² at 2047 nm, and FWHM is as wide as 175 nm. Meanwhile, FWHM $\times \sigma_e^{FL}(\lambda)$ is an important parameter for estimating gain properties, the larger value generally represents a wider bandwidth and a higher gain character. Table 6 displays the spectroscopic properties of Ho³⁺ near 2.0 µm in different glass hosts, and our sample has an advantage among the others. Fig. 6(b) shows the gain crosssection spectra (G(λ)) of BGG:Cr³⁺/Ho³⁺ with 10% amount of BaF₂, which is computed by $G(\lambda) = N \times [P \times \sigma_e^{FL}(\lambda) - (1 - P) \times \sigma_a(\lambda)]$ [26], where *P* is the population inversion given by the population ratio among the upper and lower manifolds. N is the calculated ion concentration of Ho^{3+} and determined as $4.068 \times 10^{20} \text{ cm}^{-3}$. With varying a set of P values from 0 to 1, the gain cross-section spectra are calculated and depicted versus the wavelength. Obviously, when P is at around 0.4, the positive gain occurs. The maximum gain coefficient of Ho³⁺: ${}^{5}I_7 \rightarrow {}^{5}I_8$ transition is 2.06 cm⁻¹, which is larger than that of some lead silicate glasses (0.89 cm^{-1}) [34], fluorophosphate glasses (0.74 cm^{-1}) [35], and silica-germanate glass (1.9 cm^{-1}) [36].

Based on the above results and Tanabe-Sugano diagram [12], a possible energy transfer mechanism [7,26] between Cr^{3+} and Ho^{3+} ions is illustrated in Fig. 7. The effects of spin-orbit coupling and electron-vibration interaction mix the ${}^{4}T_{2}$ and ${}^{2}E$ levels together [8]. The ${}^{2}E$ level separates the 619 and 808 nm pump channels due to the energy difference. Populations on Cr^{3+} :⁴A₂ state are initially pumped to the ⁴T₂ state, then ions on the ${}^{4}T_{2}$ decay to the ${}^{4}A_{2}$ state with 878 and 1000 nm emissions under the excitations of Xe lamp at 619 nm or an 808 nm LD, respectively. Furthermore, ions on the ⁴T₂ manifold are derived from the ⁴A₂ state via the excitations of 619 or 808 nm pump sources, then the energy transfers (ET1: Cr^{3+} : $^{4}\text{T}_{2}$ + Ho^{3+} : $^{5}\text{I}_{8} \rightarrow \text{Cr}^{3+}$: $^{4}\text{A}_{2}$ + Ho^{3+} : $^{5}\text{I}_{6}$) to the adjacent Ho³⁺:⁵I₆ state [7] after the addition of Ho³⁺. The ions on the ${}^{5}I_{6}$ state degenerate to the ⁵I₈ ground manifold with 1200 nm emission or non-radiatively decay to the ⁵I₇ state quenched by OH⁻ groups (ET2: Ho^{3+} : ${}^{5}\text{I}_{6} \rightarrow \text{OH}^{-}$). Meanwhile, ions on the ${}^{5}\text{I}_{7}$ manifold decay to the ${}^{5}\text{I}_{8}$ state with delivering 2.0 µm emission, partly depopulate to the OHgroups (ET3: $Ho^{3+}: {}^{5}I_{7} \rightarrow OH^{-}$). As the amount of BaF_{2} is monotonously added, the OH⁻ coefficient is lowered and the energy transfers from Ho^{3+} : ${}^{5}I_{6}$ or ${}^{5}I_{7}$ and Cr^{3+} : ${}^{4}T_{2}$ to OH^{-} groups are suppressed, which is beneficial for near and mid-infrared luminescence. Based on the measured lifetimes (τ_m) and calculated radiative lifetimes (τ_r) of Ho³⁺:2.0 µm, the non-radiative probability W_{nr} of the ${}^{5}I_{7}$ level can be obtained by $W_{nr} = 1/$

Fig. 8. The average luminescent lifetime of Cr^{3+} .⁴ T_2 monitored at 878 nm upon excitation of 619 nm as well as the related energy transfer efficiency η from Cr^{3+} to Ho^{3+} .

 $\tau_m - 1/\tau_r$ [26], the calculated results are provided at Table 7. The W_{nr} of the ⁵I₇ level in fluorozirconate glass (ZBLAN) is quite low [37] due to its low maximum phonon energy and low OH⁻ coefficient. And after 20% BaF₂ is added, the W_{nr} of the germanate glass is lower than that of silicate glass (359 s⁻¹) [38]. The constantly decreased W_{nr} indicates the diminished OH⁻ coefficient is favor of the radiative transition of Ho³⁺:⁵I₇, and thus a BaF₂ modified germanate glass may have promising value as a material for a laser at 2.0 µm [39].

Fig. 8 depicts the average luminescent lifetimes of Cr^{3+} :⁴ T_2 state in Cr^{3+} (τ_{Cr}) doped and Cr^{3+}/Ho^{3+} (τ_{CrHo}) co-doped glasses with different BaF₂ contents. The average lifetimes of Cr^{3+} : ⁴ $T_2 \rightarrow ^4A_2$ (878 nm) are prolonged with the substitution of BaF₂ added due to lowered OH⁻ coefficient, and the lifetime of Cr^{3+} doped sample is enhanced as long as 19.75 µs by the fluorides, which is much longer than that of alkali silicate glasses (~10 µs) [11]. The transfer efficiency (η) is calculated by $\eta = 1 - \tau_{Cr}/\tau_{CrHo}$ [40]. The achieved η of $Cr^{3+} \rightarrow Ho^{3+}$ varies with BaF₂ contents and reaches as high as 42.5% without BaF₂, which is higher than that of fluorogermanate glasses (26.2%) [7] and similar to that of Yb³⁺ (42.6%) [41]. All results indicate the Cr³⁺ ion could be a good sensitizer for Ho³⁺.

4. Conclusion

In summary, an enhanced 2.0 μ m emission of Cr^{3+}/Ho^{3+} co-doped germanate glass modified by BaF_2 is achieved under an 808 nm LD excitation. The addition of BaF_2 can distinctly diminish the refractive index and density of glass samples, furthermore, the OH^- coefficient is reduced as low as 1.08 cm^{-1} that is responsible for the promoted emission intensity and lifetime of Cr^{3+} and Ho^{3+} activators. Attractively, the excitation spectra of Cr^{3+} can be easily tailored by the incorporation of BaF_2 , which ultimately makes a higher pump efficiency for achieving an efficient energy transfer process from Cr^{3+} to Ho^{3+} . An even more rewarding result is that the energy transfer efficiency from Cr^{3+} to Ho^{3+} is improved as high as 42.5% due to the suppressed non-radiative probability of ${}^{5}I_7$ level by the substitution of BaF_2 . These results suggest that Cr^{3+}/Ho^{3+} doped germanate glass modified by BaF_2 can be considered as a boosted candidate for efficient 2.0 μ m fiber lasers operated at various pump sources.

Acknowledgments

This work is financially supported by the National Science

Foundation of China (Grants Nos. U1601205 and 51472088). Decay lifetime measurements are supported by Z.Y. Zhao from State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology.

References

- L.X. Li, W.C. Wang, C.F. Zhang, J. Yuan, B. Zhou, Q.Y. Zhang, Opt. Mater. Express 6 (2016) 2904–2914.
- [2] Z.J. Xing, S. Gao, X.Q. Liu, S.Y. Sun, C.L. Yu, L.M. Xiong, K.F. Li, M.S. Liao, J. Alloys Compd. 660 (2016) 375–381.
- [3] J.T. Fan, Y.Y. Fan, Y. Yang, D.P. Chen, L. Calveza, X.H. Zhang, L. Zhang, J. Non-Cryst. Solids 357 (2011) 2431–2434.
- [4] Y. Tian, X.F. Jing, S.Q. Xu, Spectrochim. Acta A 115 (2013) 33–38.
- [5] T. Wei, Y. Tian, C. Tian, M.Z. Cai, X.F. Jing, B.P. Li, R. Chen, J.J. Zhang, S.Q. Xu, J. Phys. Chem. A 119 (2015) 6823–6830.
- [6] J. Yuan, S.X. Shen, D.D. Chen, Q. Qian, M.Y. Peng, Q.Y. Zhang, J. Appl. Phys. 113 (2013) 173507.
 [7] F.F. Zhang, J. Yuan, Y. Liu, W.C. Wang, D.C. Yu, M.Y. Peng, Q.Y. Zhang, Opt. Mater.
- Express 4 (2014) 1404–1410. [8] W.C. Wang, J.C. Tu, W.T. Feng, G.T. Zhang, Opt. Mater Express 4 (2014) 1404–1410.
- [8] W.C. Wang, J. Yuan, D.D. Chen, J.J. Zhang, S.Q. Xu, Q.Y. Zhang, AIP Adv. 4 (2014) 107145.
- [9] W.C. Wang, Q.H. Le, Q.Y. Zhang, L. Wondraczek, J. Mater. Chem. C 5 (2017) 7969–7976.
- [10] F. Rasheed, K.P.O. Donnell, B. Henderson, D.B. Hollis, J. Phys. Condens. Matter 3 (1991) 3825–3840.
- [11] U.R. Rodriguez-Mendoza, V.D. Rodriguez, I.R. Martin, V. Lavin, J. Mendez-Ramos, P. Nunez, J. Alloys Compd. 323 (2001) 759–762.
- [12] M. Yamaga, B. Henderson, K.P.O. Donnell, Y. Gao, Phys. Rev. B 44 (1991) 4853–4861.
- [13] R. Lachheb, A. Herrmann, K. Damak, C. Rüssel, R. Maâlej, J. Lumin. 186 (2017) 152–157.
- [14] D.C. Zhou, X.M. Bai, H. Zhou, Sci. Rep. 7 (2017) 44747.
- [15] R.J. Cao, Y. Lu, Y. Tian, F.F. Huang, Y.Y. Guo, S.Q. Xu, J.J. Zhang, Sci. Rep. 6 (2016) 37873.
- [16] F.F. Huang, X.Q. Liu, Y. Zhang, L.L. Hu, D.P. Chen, Opt. Lett. 39 (2014) 5917–5920.
 [17] D.H. Li, W.B. Xu, P.W. Kuan, W.T. Li, Z.Q. Lin, X. Wang, L. Zhang, C.L. Yu, K.F. Li, L.L. Hu, Ceram. Int. 42 (2016) 10493–10497.
- [18] H. Hosono, Y. Abe, J. Am. Ceram. Soc. 72 (1989) 44-48.
- [19] J.T. Fan, B. Tang, W. Dong, Y.Y. Fan, R.H. Li, J.C. Li, D.P. Chen, L. Calveza, X.H. Zhang, L. Zhang, J. Non-Cryst. Solids 357 (2011) 1106–1109.
- [20] L. Zur, J. Janek, M. Soltys, T. Goryczka, J. Pisarska, W.A. Pisarski, J. Non-Cryst. Solids 431 (2016) 145–149.
- [21] S.Q. Zhang, M.X. Xu, X. Chen, Y.L. Zhang, L. Calvez, X.H. Zhang, Y.S. Xu, Y. Huai, Y.Q. Jin, J. Am. Ceram. Soc. 96 (2013) 2461–2466.
- [22] P.L. Higby, I.D. Aggarwal, J. Non-Cryst. Solids 163 (1993) 303-308.
- [23] Z.H. Jiang, Q.Y. Zhang, Sci. China Mater. 58 (2015) 378–425;
 Z.H. Jiang, Q.Y. Zhang, Prog. Mater. Sci. 61 (2014) 144–215.
- [24] J. Yuan, S.X. Shen, W.C. Wang, M.Y. Peng, Q.Y. Zhang, Z.H. Jiang, J. Appl. Phys. 114 (2013) 133506.
- [25] H.F. Chen, F.Z. Chen, T. Wei, Q.H. Liu, R.X. Shen, Y. Tian, Opt. Commun. 321 (2014) 183–188.
- [26] F.F. Zhang, W.J. Zhang, J. Yuan, D.D. Chen, Q. Qian, Q.Y. Zhang, AIP Adv. 4 (2014) 047101.
- [27] X. Wen, G.W. Tang, J.W. Wang, X.D. Chen, Q. Qian, Z.M. Yang, Opt. Express 23 (2015) 7722–7731.
- [28] O. Maalej, O. Taktak, B. Boulard, S. Kammoun, J. Phys. Chem. B 120 (2016) 7538–7545.
- [29] D.L. Russell, K. Holliday, M. Grinberg, D.B. Hollis, Phys. Rev. B 59 (1999) 13712–13718.
- [30] B.R. Judd, Phys. Rev. 127 (1962) 750-761.
- [31] G.S. Ofelt, J. Chem. Phys. 37 (1962) 511-520.
- [32] G.X. Chen, Q.Y. Zhang, G.F. Yang, Z.H. Jiang, J. Fluoresc. 17 (2007) 301-307.
- [33] B. Peng, T. Izumitani, Opt. Mater. 4 (1995) 797-810.
- [34] T.T. Zhu, G.W. Tang, X.D. Chen, M. Sun, Q. Qian, D.D. Chen, Z.M. Yang, Int. J. Appl. Glas. Sci. 8 (2017) 196–203.
- [35] Y. Tian, L.Y. Zhang, S.Y. Feng, R.R. Xu, L.L. Hu, J.J. Zhang, Opt. Mater. 32 (2010) 1508–1513.
- [36] T. Wang, F.F. Huang, W.Q. Cao, Y.Y. Guo, R.S. Lei, R.G. Ye, J.J. Zhang, S.Q. Xu, Opt. Mater. Express 7 (2017) 1084–1095.
- [37] L. Wetenkamp, G.F. West, H. Többen, J. Non-Cryst. Solids 140 (1992) 35-40.
- [38] X. Wang, X.K. Fan, S. Gao, K.F. Li, L.L. Hu, Ceram. Int. 40 (2014) 9751–9756.
- [39] R. Reisfeld, J. Hormadaly, A. Muranevich, J. Non-Cryst. Solids 29 (1978) 323–332.
 [40] W.C. Wang, J. Yuan, X.Y. Liu, D.D. Chen, Q.Y. Zhang, Z.H. Jiang, J. Non-Cryst.
- Solids 404 (2014) 19–25. [41] L.L. Tao, Y.H. Tsang, B. Zhou, B. Richards, A. Jha, J. Non-Cryst. Solids 358 (2012)
- 1644–1648.