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Bożena Pilarek b, Beata Salamon b, Jan Kapała a,n

a Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
b Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland
a r t i c l e i n f o

Article history:
Received 4 May 2013
Received in revised form
10 October 2014
Accepted 11 October 2014
Available online 22 October 2014

Keywords:
LaBr3‐MBr phase diagrams
Associate Model
Partially Ionic Liquid Model
Redlich‐Kister Model
Quasichemical Model
Models comparison
x.doi.org/10.1016/j.calphad.2014.10.005
16/& 2014 Elsevier Ltd. All rights reserved.

esponding author.
ail address: jan.kapala@pwr.wroc.pl (J. Kapała
a b s t r a c t

Phase diagram of LaBr3–MBr (M¼Li–Cs) pseudo-binary systems were reassessed by CALPHAD method
with Associate Model and Redlich–Kister Model. In addition the LaBr3–LiBr system was optimized
through the application of the Quasichemical Model, and LaBr3–RbBr system was optimized by Partially
Ionic Two-sublattice Model. Optimized thermodynamic properties were compared with the data pre-
viously calculated by Quasichemical Model and Partially Ionic Two-sublattice Model as well as with
experimental data. The influence of the used models for calculated thermodynamic properties has been
discussed.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Thermodynamic modeling is the critical assessment of all
available data from literature of thermochemical properties in the
system. This includes all available experimental data and de-
scriptions of previously published phase diagrams and assess-
ments. The aim of the CALPHAD method is to find a consistent
description of the phase diagram and the thermodynamic prop-
erties of investigated system. This paper presents the results of
optimization and calculation of the phase diagrams of lanthanide
halide – alkali metal halide systems by the CALPHAD method,
using various models for description of liquid phase [1–3]. Each
diagram describes the liquid phase of the system with one model
only. Therefore one of the aims of this work was to assess the
influence of used model on thermodynamic properties of the
lanthanide halide-alkali metal halide pseudo-binary systems. For
this purpose LaBr3–MBr (M¼Li–Cs) were reassessed by the CAL-
PHAD method with: Redlich–Kister Model [4], which is a typically
used mathematical model (regular solution), Associate Model [5],
Partially Ionic Two-sublattice Model [6] and Quasichemical Model
Modified by Pelton and Blander [7], which focus on physical
properties. Physical models take into account the nature of the
liquid phase, although they are more complicated than
).
mathematical models. The usability and modifications of models
describing various interactions between molecules and ions in li-
quid phase were also discussed by Krull et al. [8], Besmann and
Spear [9] and Saulov et al. [10,11]. The consideration of the As-
sociate Model also concerns the so called “entropy paradox”. The
paradox lies in the fact that the configurational entropy, which is a
measure of disorder, appears to be higher in a solution with or-
dering than in a completely disordered solution. This is true for
relatively small amount of associate. Some aspects of this problem
are discussed in next part of this work. The model used to describe
the liquid phase determines the results obtained for the solid
phases in the investigated system. The small differences between
results of various models may significantly impact the further in-
terpretation. It is preferred to minimize the number of coefficients
because it facilitates the process of optimization. The Redlich–
Kister Model was treated as a reference model for comparisons.

The experimental data, which were used for construction of the
phase diagrams (liquidus points and enthalpy of mixing) are
usually obtained at high temperatures. Extrapolation of this data
down to ambient temperatures may lead to relatively high errors.
Therefore, the next aim of this paper was to verify the compat-
ibility of the data at standard conditions and in high temperatures
by the CALPHAD method. For this purpose, the values of formation
enthalpies measured by Seifert and Yuan [12] at standard condi-
tions of ternary compounds were used to verify the thermo-
dynamic interpretation of the data at wide temperature range.
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2. Thermodynamic models

2.1. Redlich–Kister Model (RKM)

The Redlich–Kister Model [4] is the most common standard
model for solution modeling. This model is based upon the sub-
regular solution however it is extension of modeling of all kinds
asymmetric shapes. The Redlich–Kister Model assumes develop-
ment of sub-regular solution model, because in this case interac-
tion energies change with composition in an non-linear manner.
This model is useful for substitutional phases in simple metallic
systems. The complexity of the polynomial equation is selected
relatively to obtained experimental data. The Redlich–Kister
Model is typical mathematical representation of thermodynamic
properties of phases. The Gibbs excess energy of mixing is given by
formula:
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Redlich et al. [4] gave a detailed description of the Redlich–Kister.
Physical meaning of the variables in the Eqs. (1) and (2) are
explained in paragraph 2.5.

2.2. Associate Solution Model (ASM)

The Associate Model [5] is one of ionic liquid models. This
model can be used when describing the properties of alloy that
melts with compound formation tendency indicating chemical
short-range order. It assumes the following formation of associ-
ates: pAþqB¼ApBq. The liquid phase is therefore treated as
though it is composed of a molecular species ApBq in equilibrium
with species A and B (nAl and nBl). The mole fractions of A, B and
ApBq in a system containing 1 mole of A and B atoms, are given by
equations [13]:

= + = + =x n pn x n qn x n; ; (3)A Al A B B Bl A B A B A Bp q p q p q p q

The excess Gibbs energy of mixing is given by the general formula
[13]:

= +G G G (4)ex ass reg

G ass and G reg are defined as:
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Existence of an associate in a system often results in large de-
viation from regular behavior. The Associate Model calculations
are based on fitting of experimental data for enthalpies of mixing.
This approach allows selection of the most appropriate associate in
the substantial number of cases. The enthalpies of mixing curves
are often characterized by minimum near composition where the
associate exist [13]. This is also marked by non-ideal mixing en-
tropy. This phenomenon is observed in the case of LnX3–MX sys-
tems (where Ln¼La…Lu, M¼Li…Cs metal and X¼Cl…I) [14].
However, observed minima are not as sharp as in pure model.
Therefore the stoichiometry of associate (p/q), is described by
iterating quantity. The model assumes that there is only one as-
sociate in the system (ApBq). If the system finds the more than one
type of associate, it is not always obvious which types of associates
actually exist.

The Gibbs energy of liquid phase is given by equation:
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K1 and K2 have identical meaning to the other models. K3 describes
the functions of formation of the associate, while K4 to K6 are
polynomial interaction terms. A detailed description of the As-
sociate Model was given by Sommer et al. [5]. Physical meaning of
the variables in the Eq. (3)–(7) are explained in paragraph 2.5.

2.3. Partially Ionic Two-sublattice Liquid Model (PIM)

The Partially Ionic Two-sublattice Model is an extension of the
sublattice model. Application of the sublattice model is limited to
the systems where no neutral ions exist. The model purposed by
Hillert et al. [6] overcomes this problem. This model uses several
forms of artificial remediation to optimize the thermodynamics of
different kind of systems, salts and alloys. In terms of mathema-
tical properties this model and Associate Model are strongly re-
lated. The Partially Ionic Liquid Model can be used to describe the
liquid phase in a pseudo-binary LaBr3–MBr system. The Special
Binary Case of Hillert's Model of Partially Ionic Liquids has the
following form: (Aþ i)P(B� j, B, Va� i)Q. The more electropositive
component forms cation sublattice (in case of LaBr3–RbBr system
it is (Rbþ)P), and gives it the natural valency (Br�)Q. The LaBr3
component forms anion sublattice as (LaBr6�3)Q and as neutral
molecule (LaBr3)Q.

The Gibbs excess energy of mixing is given by the following
formula:
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The Gibbs energy is given by equation:
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Hillert et al. [6] gave a detailed description of the Partially Ionic
Two-sublattice Model. Physical meaning of the variables in the
Eqs. (8) and (9) is explained in paragraph 2.5.

2.4. Quasichemical Model Modified by Pelton and Blander (QM)

The Quasichemical Model Modified by Pelton and Blander be-
longs to the family of ionic liquid models. The model can be widely
applied, especially to molten oxide or molten salts. A detailed
description of the Modified Quasichemical Model was given by
Pelton and Blander [7]. It assumes a strong tendency to order in
liquid phase around specific composition. This specific composi-
tion is determined by specific physical or chemical phenomena
[13]. The quasichemical theory assumes that in a binary system



B. Pilarek et al. / CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 47 (2014) 211–218 213
with components “A” and “B” particles mix substitutionally on a
quasi-lattice with a constant coordination number z. It also as-
sumes existence of three types of nearest-neighbor pairs (A–A, B–
B, A–B). When components are mixed, A–B pairs are formed at the
expanse of A–A and B–B pairs by the following reaction:

– + – = –(A A) (B B) 2(A B) (10)

(If the molar Gibbs energy of reaction (Eq. (7)) is zero the solution
is ideal. For non-ideal solutions, the composition of the maximum
ordering is fixed by ratio r [7].

In the model, the Gibbs excess energy of mixing is given by the
following formula:
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We use polynomial excess terms by Redlich–Kister Model im-
plemented in BINGSS program. We assumed that the influence of
kind of polynomial in this model is negligible for the purpose of
this paper.

The Gibbs energy is expressed by the following equation:
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2.5. Physical meaning of the variables

The temperature dependence of the Gibbs energy of a pure
element or any composition of the LaBr3–MBr systems is given by
the following formula (SGTE description):

° – = + + + + +−G T H T T T T T T( ) (298.15 K) A B C ln( ) D E F (13)i
SER 2 1 3

The explanation of all the variables in the equations (Eq. (1)–
(13)) that describe each of the models is described below:

G° Gibbs energy of phase ϕ,
Gass Gibbs energy of formation of the associate

°GA Bp q
Gibbs energy of formation of one mole of associate

G reg Gibbs energy of interactions between the species A and B
themselves and with associate ApBq

HSER enthalpy of pure elements at 298.15 K in their stable
states (enthalpy of “stable element reference”),
Table 1
The coefficients used in Eq. (13) which describes properties of pure alkali halides, used

Compound T range/K A B

LiBr (s) 298–823 �8443.35 136.79
LiBr (l) Above 823 �6425.72 351.87
NaBr (s) 298–1020 �14875.95 237.95
NaBr (l) Above 1020 3429.31 313.18
KBr (s) 298–1007 �21169.55 359.37
KBr (l) Above 1007 �3516.05 362.40
RbBr (s) 298–965 �15193.91 223.84
RbBr (l) Above 965 �3880.88 327.71
CsBr (s) 298–911 �15400.37 226.97
CsBr (l) Above 911 �12871.83 404.43
LaBr3 (s) 298–1058 �29659.47 470.18
LaBr3 (l) Above 1058 �25011.70 835.67
Ki each Ki is given as function of temperature after Eq. (5)
by the ith line of coefficients (if the coefficient Ki contains
A and B values only, the coefficient Ai describes enthalpy
of mixing, and the coefficient Bi describes entropy of
mixing),

K1 contribution to refG° from component LaBr3, 0G°LaBr3 (T )
– 0Gref

LaBr3 (T )
K2 contribution to refG° from component MBr, T–T.

For stable phases, equation: T–T, is set equal to zero.

x concentration of sample,
yi site fraction of component i,
ni moles of component i in 1 mole of atoms,
nApBq moles of associate in 1 mole of atoms,
n the total number of moles,
N the total number of atoms in the formula (vacancies are

not counted),
p2 the number of lattice sites of this sublattice in one mole

of formula units.
Xij the fraction of nearest-neighbor pairs which are i–j pairs.

It is defined as: Xij¼nij/(n11þn22þn12), where nij is the
number of moles of each type of pair in solution.
3. Calculation and optimization procedure

The calculation by the CALPHAD method was made using data
of pure system components presented by Kubashewski et al. [15]
for alkali metal bromides and presented by Rycerz and Gaune-
Escard [16] for LaBr3 compound. The coefficients of Eq. (13) for
pure system components are presented in Table 1. The LaBr3–LiBr
phase diagram has been measured by Rycerz et al. [17], while the
LaBr3–NaBr, LaBr3–KBr, LaBr3–RbBr and LaBr3–CsBr phase dia-
grams have been measured by Seifert et al. [12]. The experiments
prove that the LaBr3–LiBr and LaBr3–NaBr systems are simple
eutectic systems. In LaBr3–KBr system exists only congruently
melting K2LaBr5 compound. In case of LaBr3–RbBr and LaBr3–CsBr
systems there are congruently melting M3LaBr6 compounds and
incongruently melting M2LaBr5 compounds. In addition LaBr3–
CsBr system displays existence of CsLa2Br7 compound that melts
incongruently.

The experimental data were obtained by digitization of phase
diagrams [12,17]. The mixing enthalpies of LaBr3 mole fraction
were given by Gaune-Escard et al. [18]. The negligible difference
between heat capacity measured by Rycerz and Gaune-Escard [16]
and obtained by Neumann–Kopp rule had been observed for
whole temperature range for all compounds formed in
in this work.

C D�103 E�10�5 F�106 Ref.

�30.25 �20.69 �3.60 0 [15]
�65.27 0 0 0 [15]
�47.91 �6.66 0 0 [15]
�62.34 0 0 0 [15]
�69.16 22.78 3.24 �7.50 [15]
�69.87 0 0 0 [15]
�49.37 �5.33 0 0 [15]
�66.94 0 0 0 [15]
�50.38 �4.27 0 0 [15]
�77.40 0 0 0 [15]
�96.48 �10.06 0 0 [16]
�151.12 0 0 0 [16]



Table 2
The comparison of calculated values of coefficients of Eqs. (2), (7), (9), (12) for the LaBr3–MBr (M¼Li–Cs) system. All data are in J mol�1 for one mole of solution.

Model Calculated coefficients

K3 K4 K5 K6 K7 K8 K9 Main associate /x(LaBr3)

LaBr3–LiBr
Associate Model �2400þ9.0T �1000�6.0T �8200 �3200þ4.0T 0.50
Redlich–Kister Model �3300�6.5T �1800 1700 –

Quasichemical Model �8700�17.5T 2000 4500 0.50
LaBr3–NaBr
Associate Model �1500�6.9T �8700 �26,700 �14,800 0.50
Redlich–Kister Model �19,000�10.4T �7600 –

LaBr3–KBr
Associate Model �25,250þ15.0T �40,000þ3.0T �40,500�15.0T �40,000�26.0T 0.33
Redlich–Kister Model �48,800�3.1T �15,500þ4.4T �8000 –

LaBr3–RbBr
Associate Model �80,200þ39.0T �46,400�8.0T �20,000þ5.0T �47,000�43.0T 0.25
Redlich–Kister Model �66,680 3000þ20.0T 3900 10,000 –

Partially Ionic Two-sublattice
Model

�19,500 �6500 45,000 �16,000 22,000�10.1T �20,000 31,000 0.25

LaBr3–CsBr
Associate Model �71,000þ27.0T �63,000þ4.0T �34,000þ3.0T �57,000�30.0T 0.25
Redlich–Kister Model �75,000þ2.9T �28,000þ5.0T �8000 3000 –

Table 3
The comparison of thermodynamics properties of intermediate compounds. All data are in J mol-1 for one mole of solution. ΔfG°¼ΔfH°�TΔfS°.

Parameter Calculated coefficient Experimental values

ASM RKM PIM QM

K2LaBr5
ΔfH° �8919.0 �12000.0 �20777.7 [2] �6833.3 [1] �6833.3 [12]

ΔfS° 4.0 0.3 �4.0 [2] �1.7 [1] 5.0 [12]

ΔfG°(298 K) �10111.0 �12089.4 �19585.7 [2] �6326.7 [1] �8323.3 [12]

Rb3LaBr6
ΔfH° 5862.6 3725.5 4055.3 6198.4 [1] 3775.0 [12]

ΔfS° 22.9 21.0 23.4 �24.3 [1] 15.8 [12]

ΔfG°(701 K) �10252.6 �10995.5 �12620.4 23222.4 [1] �8201.4 [12]

Rb2LaBr5
ΔfH° �13850.8 �12813.2 �11894.0 �9291.9 [1] �9300.0 [12]

ΔfS° 2.4 �9.0 6.9 �7.4 [1] 0.5 [12]

ΔfG°(298 K) �13923.0 �21657.2 �14992.6 �7072.0 [1] �9704.3 [12]

H-Cs3LaBr6
ΔfH° �3273.1 �14123.5 1182.3a �1600.3 [1] 750.0 [12]

ΔfS° 17.4 8.0 18.9a �16.0 [1] 18.0 [12]

ΔfG°(721 K) �15818.0 �19894.5 �11775.5a 9935.7 [1] �12228.0 [12]

L-Cs3LaBr6
ΔfH° 5756.9 �12034.1 �1668.7a �1600.3 [1] �1600.0 [12]

ΔfS° 29.9 10.9 14.6a �16.0 [1] 14.6 [12]

ΔfG°(298 K) �3153.3 �15282.3 �6039.0a 3167.7 [1] �5950.8 [12]

Cs2LaBr5
ΔfH° �8126.0 �14900.0 569585a �8205.0 [1] �8200.0 [12]

ΔfS° 10.0 4.5 �126.4a �6.6 [1] 4.7 [12]

ΔfG°(298 K) �11106.0 �16241.0 607,500a �6238.2 [1] �9600.6 [12]

CsLa2Br7
ΔfH° �9542.5 9543.2 160,840a �2127.5 [1] �1066.7 [12]

ΔfS° 1.3 25.6 12.9a �9.0 [1] 2.5 [12]

ΔfG°(298 K) �9929.9 1914.7 164,726a 554.5 [1] �1811.7 [12]

a The reference [22] contains not enough data to comparison. The values were calculated using data from references cited there.
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investigation systems. This means that enthalpy of formation and
entropy of formation is not dependent on temperature.

All calculations were made by BINGSS and BINFKT programs of
Lukas et al. [19] and the special management program PHDMAN
[20] was used for fast optimization. The PHDMAN was expanded
for fast data change in trial-and-error approach and Bayes re-
gression. The process of optimization of the phase diagram is
discussed below:
1.
 Preparation of appropriate data in supported format, used by
the programs.
2.
 Fitting curves, which represent the dependence of interaction
parameter (λ) and mixing enthalpy (ΔHMIX) on mole fraction of
LaBr3. The Gibbs energies of mixing were modeled by the for-
mula Eqs. (2), (7), (9), (12) depends on chosen model. In this
step we change only the Ai coefficient for liquid phase to fit the
curves. Optimized results should be in a good agreement with
experimental data.
3.
 Finding a good fit of liquidus and eutectic points with iteration
method by changing the parameters, which describe solid and
liquid phases. Eq. (13) describes the thermodynamic properties
(Gibbs energy of formation) of solid phases in these systems,
obtained by the CALPHAD method. In this step we change all of



Fig. 1. The measured and calculated phase diagram of the LaBr3–LiBr system. All
models give the same results. Open circles – experimental data [17].

Fig. 2. The comparison of the phase diagram of the LaBr3–NaBr system, using: 1 –

Associate Solution Model, 2 – Redlich–Kister Model. Open circles – experimental
data [12].

Fig. 3. The comparison of the phase diagram of the LaBr3–KBr system, using: 1 –

Associate Solution Model, 2 – Redlich–Kister Model. Open circles – experimental
data [12].

Fig. 4. The comparison of the phase diagram of the LaBr3–RbBr system, using: 1 –

Associate Solution Model, 2 – Redlich–Kister Model, 3 – Partially Ionic Two-sub-
lattice Model. Open circles – experimental data [12].

Fig. 5. The comparison of the phase diagram of the LaBr3–CsBr system, using: 1 –

Associate Solution Model, 2 – Redlich–Kister Model. Open circles – experimental
data [12].

Fig. 6. The comparison of the mixing entropies of LaBr3–LiBr system, calculated
using: 1 – Associate Solution Model, 2 – Redlich–Kister Model, 3 – Quasichemical
Model Modified by Pelton and Blander.
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coefficient for solid and liquid phases, but the Ai (enthalpy of
mixing) coefficient for liquid phase is only slightly corrected.
The calculated values of all coefficients of the investigated
system are shown in Tables 2 and 3.
4.
 The quality of the fit has been controlled by the least squares
method applied to enthalpy of mixing and liquidus points,
simultaneously.
A detailed description of the optimization procedure by BINGSS
and BINFKT programs was given by Lukas and Fries [21].

In this paper, the phase diagrams of the LaBr3–MBr (M¼Li…Cs)
systems were optimized using Redlich–Kister Model [4] and As-
sociate Model [5]. The LaBr3–RbBr system was in additionally



Fig. 7. The comparison of the mixing entropies of LaBr3–NaBr system, calculated
using: 1 – Associate Solution Model, 2 – Redlich–Kister Model.

Fig. 8. The comparison of the mixing entropies of LaBr3–KBr system, calculated
using: 1 – Associate Solution Model, 2 – Redlich–Kister Model.

Fig. 9. The comparison of the mixing entropies of LaBr3–RbBr system, calculated
using: 1 – Associate Solution Model, 2 – Redlich–Kister Model, 3 – Partially Ionic
Two-sublattice Model.

Fig. 10. The comparison of the mixing entropies of LaBr3–CsBr system, calculated
using: 1 – Associate Solution Model, 2 – Redlich–Kister Model.

Table 4
The standard deviations of fit of liquidus (ΔL/K) and dependence of mixing en-
thalpy on mole fractions (ΔHMIX / J mol�1) obtained for all of calculated systems
and models.

System Model ΔL ΔHMIX

LaBr3–LiBr ASM 9.2 85.5
RKM 7.5 68.4
QM 6.2 70.6

LaBr3–NaBr ASM 11.0 129.8
RKM 14.4 127.6

LaBr3–KBr ASM 24.1 597.8
RKM 17.2 646.9

LaBr3–RbBr ASM 22.4 770.5
RKM 19.3 802.7
PIM 20.2 880.0

LaBr3–CsBr ASM 26.8 719.7
RKM 28.7 681.3
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calculated with Partially Ionic Two-sublattice Model [6]. The LaBr3
–LiBr system was calculated with Quasichemical Model Modified
by Pelton and Blander [7]. All calculated phase diagrams and
mixing entropies are shown in Figs. 1–10.
4. Discussion

All of the lanthanide(III) halide – alkali halide systems show
similar topology of phase diagrams, which are similar to the ones
presented in Figs. 1 and 5. The standard deviations of the fit of all
calculations made for the purpose of this paper are presented in
Table 4. These results show that differences between fit of the
models are not statistically important. This led us to the conjecture
that all models lead to the mathematically correct solution.
Therefore, it can be assumed that differences between obtained
outcomes result only from the intrinsic nature of a particular
model used to calculation. We assume the same for calculations
made by other authors [1,2,22].

Calculated results for various systems and models of liquid
phase are shown in Table 2. Table 3 contains the results for solid
phases and Table 5 contains invariant points found for various
models compared with experimental values.

In the case of LaBr3–LiBr, LaBr3–NaBr all of the calculated phase
diagrams correspond well with experimental data (Figs. 1 and 2).
In the calculation of these systems using Associate Model, it was
assumed that a constant value of p(MBr)/q(LnBr3) equal to 1,
where p and q are stoichiometric coefficients. In the case of
Quasichemical Model Modified by Pelton and Blander we assumed
the maximum ordering of the mixture at the AB composition
(r¼1/2) and coordination number z¼6. The optimization of LaBr3–
LiBr, LaBr3–NaBr systems is possible for each stoichiometry of as-
sociate. We stated that kind of associate does not have real influ-
ence on the results, so we assume the most basic one. For simple



Table 5
Comparison of the calculated and the experimental invariant points in the LaBr3–MBr (Li–Cs) systems.

Reaction Properties: T/K (xLaBr3)

Model: ASM RKM PIM QM Experimental value

L¼LiBrþLaBr3 727 (0.225) 728 (0.231) 727 (0.233)[2] 727 (0.232) 727 (0.241)[17]

L¼NaBrþLaBr3 730 (0.383) 731 (0.394) 730 (0.382)[2] 730 (0.380)[1] 730 (0.38)[12]

L¼KBrþK2LaBr5 818 (0.189) 818 (0.184) 819 (0.180)[2] 825 (0.199)[1] 818 (0.20)[12]

L¼K2LaBr5 878 (0.333) 878 (0.333) 878 (0.333)[2] 880 (0.333)[1] 878 (0.33)[12]

L¼K2LaBr5þLaBr3 795 (0.547) 795 (0.556) 795 (0.54)[2] 787 (0.584)[1] 794 (0.60)[12]

L¼RbBrþRb3LaBr6 846 (0.173) 846 (0.156) 846 (0.161) 848 (0.165)[1] 846 (0.17)[12]

L¼Rb3LaBr6 942 (0.250) 942 (0.250) 942 (0.250) 943 (0.250)[1] 942 (0.25)[12]

L¼Rb3LaBr6þRb2LaBr5 868 (0.310) 868 (0.334) 868 (0.317) 864 (0.304)[1] 860 (0.31)[12]

L¼Rb2LaBr5 870 (0.333) 868 (0.333) 868 (0.333) 868 (0.333)[1] 868 (0.33)[12]

L¼Rb2LaBr5þLaBr3 764 (0.511) 765 (0.555) 764 (0.515) 765 (0.543)[1] 764 (0.55)[12]

Rb3LaBr6¼Rb2LaBr5þRbBr 701 (–) 701 (–) 701 (–) 705 (–)[1] 701 (–)[12]

L¼CsBrþH-Cs3LaBr6 842 (0.111) 842 (0.086) 842 (0.110)[22] 842 (0.106)[1] 842 (0.10)[12]

L¼Cs3LaBr6 1013 (0.250) 1013 (0.250) 1014 (0.250)[22] 1013 (0.250)[1] 1013 (0.25)[12]

LþCs3LaBr6¼Cs2LaBr5 765 (0.418) 765 (0.511) 764 (0.440)[22] 771 (0.448)[1] 765 (0.45)[12]

L¼CsLa2Br7þCs2LaBr5 742 (0.443) 744 (0.531) 742 (0.470)[22] 742 (0.478)[1] 743 (0.48)[12]

LþLaBr3¼CsLa2Br7 822 (0.589) 823 (0.603) 820 (0.682)[22] 820 (0.597)[1] 824 (0.60)[12]

H-Cs3LaBr6¼ L-Cs3LaBr6 721 (0.250) 726 (0.250) 722 (0.250)[22] – 732 (0.25)[12]
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eutectic systems in the liquid phase an increase of mixing entropy
is observed, and the excess entropy is positive (Figs. 6 and 7). This
is probably caused by the increased number of objects in liquid
phase. It also means that amount of associate in the liquid phase is
very small and it has got no apparent effect on dependence of
mixing entropy on mole fraction. Note, that dependence of Gibbs
energy on temperature between melting point and eutectic point
in liquid NaBr has been corrected by ΔA¼�5200.0 J mol�1,
ΔB¼5.0 J mol�1 K�1 (Eq. (4)). Similar effect for NaBr has been
observed in previous works [3,23].

In LnBr3–MBr (Ln¼La…Lu, M¼Li…Cs) systems compound with
stoichiometry 3:1 (M3LnX6) usually exists and melts congruently.
This is the premise of assumption that associates in liquid phase in
LaBr3–RbBr and LaBr3–CsBr systems show the same stoichiometry
{3MþþLaBr63�}, but the LaBr3–KBr system contains only con-
gruently melting compound with stoichiometry 2:1. In case of this
system the assumption of 3:1 stoichiometry has no solution, thus
our calculation used associate {2KþþLaBr52�}. The maximum of
mixing entropy is observed for values of x(LaBr3) higher than
0.5 for both RKM, ASM models (Fig. 8). The value of mixing en-
tropy at maximum is significantly lower than in LaBr3–LiBr and
LaBr3–NaBr systems (Figs. 6 and 7). Moreover, the dependence of
mixing entropy on mole fractions is explicitly asymmetric. This
dependence between system with the lighter and heavier alkali
metals is intermediate. The asymmetry comes from the interac-
tions of proposed associate, which decreases the number of ob-
jects in solution and consequently decreases mixing entropy in
compositions lower than 0.5.

The systems LaBr3–RbBr and LaBr3–CsBr are considerably si-
milar. In both systems congruently melting compounds of stoi-
chiometry 3:1 and incongruently melting compounds of stoi-
chiometry 2:1 exist. In addition, in LaBr3–CsBr system contains
incongruently melting compound of stoichiometry 1:2. Therefore
the calculation of these systems has been done by using Associate
Model and a constant value of p(MBr)/q(LnBr3) equal to 3. Dif-
ferences in calculated phase diagrams, depending on used model,
are shown in Figs. 4 and 5 and in Table 5. In both systems for all
used models there are observed smaller values of mixing entropies
than ideal entropy for mole fraction lower than 0.5. This is shown
in Figs. 9 and 10. This is especially visible in Associate Model,
which is significantly more flexible. The dependences of mixing
entropy on mole fraction for this model contain characteristic in-
flection range. This fact suggests the existence of relatively large
amount of associate {3MþþLaBr63�}. Estimated amount of this
associate is probably more than 80% of maximal possible value
(which is 0.25 mole associate per mole of solution at x(LaBr3)
equal to 0.25). The amount of associates {3MþþLaBr63�} for the
LaBr3–RbBr and LaBr3–CsBr systems and {2MþþLaBr63�} for
LaBr3–KBr system is outside the range (higher) of “entropy para-
dox”. The kind of used model has no visible influence on obtained
values of mixing entropies in the liquid phases in the LaBr3-LiBr
and LaBr3-NaBr systems. It means that “entropy paradox” is
naturally omitted. We assume the same for other lanthanide ha-
lide–alkali halide systems.

The calculated and measured thermodynamic functions of
formation of compounds from constituent system components are
shown in Table 3. The calculated values of formation enthalpies of
K2LaBr5 compound at standard conditions, obtained by calculation
throughout various models differs significantly, depending on
model used. The acceptable agreement with measured data [12]
for ASM and QM [1] has been observed. Note that identical values
of enthalpy of formation in QM suggest that the experimental
value were fixed during calculations but in our calculations [1] by
ASM this value was not fixed. The values of calculated thermo-
dynamic functions of formation obtained for Rb3LaBr6 and
Rb2LaBr5 also shows significant differences between models. The
QM model gives nonrealistic value of Gibbs energy of formation of
Rb3LaBr6 at 701 K. This value should be negative. Additionally,
negative values of entropy of formation for both compounds
shows that QM model is not respective for this system. The ne-
gative values of entropy of formation of Rb3LaBr6 disqualify the
RKM for this system. The LaBr3-CsBr system contains three solid
compounds Cs3LaBr6, Cs2LaBr5, and CsLa2Br7. The positive values
of Gibbs free energy of formation shows that usability of RKM,
PIM, and QM models may be questionable.

Taking into account the Gibbs energy of formation of com-
pounds the most stable compounds at the standard conditions is
are K2LaBr5, Rb2LaBr5, and Cs2LaBr5 (Table 3). The existence of
L-Cs3LaBr6 and CsLa2Br7 compounds at standard conditions may
be disputable due to inconsistences of functions of formation.
5. Conclusion

Taking into account all models used for optimization of above
phase diagrams we conclude the following:
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-
 The fitting of phase diagrams' points is possible for all used
models, excluding LaBr3–KBr system with stoichiometry ratio
p/q equal to 3.
-
 The differences between fitting of liquidus points by various
models are statistically not important. The same conclusion
concerns fitting of mixing enthalpies at liquid phase.
-
 The amount of associate increases in sequence from LaBr3–LiBr
to LaBr3–CsBr.
-
 The Quasichemical Model, Partially Ionic Two-sublattice Model
and Redlich–Kister Model may lead to unacceptable values of
Gibbs energy of formation, which do not agree with fact of
existence of solid compounds, ΔfG°40 (Table 3).
-
 In the calculations by Associated Model, negative values of
formation entropy of compound have not been observed
(Table 3).

The considerations above lead to the conclusion that the ef-
fectiveness of the used model cannot be assessed exclusively on
the basis of simultaneous fit to the experimental points of liquidus
and the mixing enthalpy. The same data used with various models
lead to significantly different results. We think that these differ-
ences are caused by the nature of the model used. This means that
selection of the specific model may be crucial for interpretation.
Furthermore, the correspondence between physical models used
and the reality (model's accuracy) shows different limits and may
be the main cause of the inconsistency between obtained results.
The Associate Model has been selected as the best one for the
description of liquid phases of lanthanide(III) halide–alkali metal
halide systems. This conclusion is justified to systems with rela-
tively big amount of associates. For systems with small amount of
associates, where the calculation gives an ambiguous solution, any
model can be used, because the result is not dependent on the
used model.
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