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A B S T R A C T

For the first time, the promising material, Ti3C2Tx MXene, is successfully utilized as a saturable absorber to
achieve a passively Q-switched operation of a 2.1 μm Ho:YLF laser. The maximum average output power of 341
mW is realized in the Tm:fiber in-band pumped Ho:YLF laser with the shortest pulse width of 837 ns corre-
sponding to a single pulse energy and a peak power of 20.8 μJ and 7.43 W, respectively. The results prove that
Ti3C2Tx is an efficient optical modulator with the potential for important applications in the field of 2.1 µm
ultrashort pulse lasers.

1. Introduction

Passively Q-switched solid-state lasers based on Ho3+ ions oper-
ating slightly over 2 μm have important applications in remote sensing,
radar, medical, and pumping of optical parametric oscillators [1–4]. Ho
lasers are generally in-band pumped into the 5I7 energy level mainly by
Tm-fiber or Tm-doped solid-state lasers around the wavelength range of
~1.9–1.95 μm. Compared with the Tm-doped solid-state lasers, com-
mercial Tm:fiber sources can supply a mature manipulation with high
power, beam quality, and optional emission wavelength (1.8–2 μm) [5].
Moreover, the in-band pumped Ho pulse laser has the characteristics of
less heat and high efficiency because of its small quantum loss [6]. In
effectuating the high-energy Q-switched mode, Ho-doped fluorides are
more outstanding laser mediums than Ho:YAG because they own much
longer upper laser-level lifetimes (~14 ms) and larger emission cross-
sections (1.6 × 10−20 cm2 around 2050 nm versus 1.2 × 10−20 cm2

around 2090 nm of the Ho:YAG crystal), but smaller crystal splitting
than Ho:YAG [7]. Continuous wave and actively Q-switched Ho:YLF
lasers have been extensively researched upon; however, only a few
papers have covered nanosecond pulse passively Q-switched (PQS)
Ho:YLF lasers up to now [8–10].

PQS lasers based on saturable absorbers (SAs) are mostly accom-
panied by remarkable merits, for instance, connatural compactness,

simplicity, and low cost [11–18]. The two-dimensional (2D) material,
MXene-SA, has recently brought new opportunities for PQS lasers be-
cause of its unique and distinct optical properties [19–23]. MXene is
usually prepared by optionally etching out the A tiers from the
Mn+1AXn phases, where M is the initial transition metal, and X is
carbon and/or nitrogen [24]. The first successfully prepared and most
studied 2D material is Ti3C2Tx, which has the advantages of good
conductivity, tunable bandgap, and easy fabrication [25–30]. Ti3C2Tx

has a tier configuration (e.g., graphene, whose inter-tier length is
0.98 nm) [31]. The lower linear absorption of Ti3C2Tx (~1%/nm)
produces a loss contrasting that of graphene (2.3% each atomic tier)
[32–34]. Unlike other 2D materials, Ti3C2Tx shows a higher threshold
for light-induced damage, and the nonlinear transmittance is improved
[35]. In addition, the zero-gap band texture of Ti2C3 (e.g., < 0.2 eV of
Ti3C2Tx) has a broadband optical character of the wavelength from
visible light to mid-infrared light [36–37]. As for the 2D materials, only
graphene has ever been used as the SA in Ho:YLF lasers [9]. To the best
of our knowledge, until now, no report has focused on the PQS per-
formance based on Ti3C2Tx of the Ho laser around 2.1 μm.

This study first demonstrates an integrated research on the PQS
laser operations in a Ti3C2Tx-based Ho:YLF laser pumped by a 1.94 μm
fiber laser. A contrast analysis of the laser characteristics with two
different output lenses is then performed. The maximum average output
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power of 341 mW corresponding to the shortest pulse width of 837 ns
and the repetition rate of 35.5 kHz is acquired in the PQS laser.

2. Fabrication and characteristics of Ti3C2Tx-SA

The Ti3C2Tx-SA used in our experiment was prepared through an
acid etching process at room temperature (Fig. 1(a)). First, 2 ml Ti3AlC2

and 30 ml hydrofluoric acid (HF) were mixed in a beaker. The solution
was then heated to 48 °C in a water bath pot and evenly stirred. After
6 h, 1 ml of the solution was dripped into the test tube and added with
deionized water. The diluted solution was placed and centrifuged at
4000 rpm for 3 min, then the pH was measured. The earlier steps were
repeated until the pH was maintained between 4 and 6. Finally, the
supernatant was taken onto the quartz plate and dried at room tem-
perature to obtain Ti3C2Tx-SA. A scanning electronic microscope (SEM)

image of the Ti3C2Tx particle showed a structure similar to that of an
accordion in Fig. 2(a). The transmission electron microscope (TEM)
analysis of the sample (Fig. 2(b)) depicts it to be quite thin and trans-
parent to electrons. Fig. 2(c) illustrates the atomic lattice of Ti3C2Tx-SA
under a high-resolution TEM (HRTEM). The inset shows the selected
area electron scattering (SAED) pattern confirming the hexagonal
symmetry of the planes. Fig. 2(d) shows the side-view of the HRTEM
displaying a bilayer structure of the as-exfoliated carbon layer. It can be
seen from the figure that the layer thickness of Ti3C2Tx is about 1 nm. In
addition, we measured the nonlinear saturable absorption properties of
Ti3C2Tx by a mode-locked Tm-doped fiber laser with a 23.6 ps pulse
duration and 31 MHz repetition rate at 2000 nm. The transmittance was
detected by varying intensity of the laser seed source power. Fig. 3
shows the modulation depth of Ti3C2Tx-SA was 26.6%.

Fig. 1. Fabrication process of Ti3C2Tx.
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Fig. 2. (a) SEM images of the delaminated Ti3C2Tx. (b) TEM image characterizing the surface morphology of Ti3C2Tx. (c) HRTEM of Ti3C2Tx. Inset: SAED image. (d)
Side-view of the HRTEM.
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Fig. 3. Nonlinear absorption property of Ti3C2Tx.
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3. Experimental setup

Fig. 4 schematically shows the experimental facility of the Ho: YLF
pulse laser. A commercial Tm: fiber laser (TDFL01-00015), whose

wavelength was 1940 nm, was used as the pump source. A lens with
100 mm focal length was applied to collimate and focus the pump light
into the laser media. The Ho: YLF (3 mm * 3 mm * 10 mm) crystal was
placed into a Cu holder and stabilized at 13 °C. The crystal has dopant
concentrations of 0.5% Ho and both end faces of the crystal are AR
coated at 1940 nm and 2050 nm. The size of the pump spot radius in the
Ho: YLF was gauged to be approximately 102 μm by the 90/10 knife
edge method [38], which can well be suited with the oscillation spot. A
V-shaped stabilized optical resonator comprised a flat mirror M1(T >
99% at the wavelength of 1850–1950 nm and R > 99% at the wave-
length of 2050–2150 nm), a flat high-reflective mirror M2, and a plano-
concave output coupler (OC) M3 (radius of curvature: 200 mm) to
prevent the return of the laser to break the Tm:fiber laser. Two OCs
with different transmissions of 1% and 3% at 2050–2150 nm were
tested. The length of the resonant cavity designed in the experiment is
178 mm.

4. Results and discussion

First, the continuous wave (CW) laser mode without Ti3C2Tx-SA was
performed when the absorbed pump power was 0.32 W. Fig. 5 displays
the correlation between the output power and the absorbed pump
power with two different OCs. The laser output power quite linearly
increases with the absorbed pump power, and no noticeable saturation
tendency was observed. The maximum average output power of 1.43 W
with a slope efficiency of 58.9% was obtained. The laser threshold was
2.56 W by transmission of 3% OC.

Ti3C2Tx-SA was then installed in the resonator with a 30 mm dis-
tance of OC. By using the calculated ABCD matrix, the radius of the
TEM00 mode at the location Ti3C2Tx-SA was found to be approximately
120 μm. The position and the angle were carefully adjusted such that
the laser can operate in a PQS mode. When the absorbed pump power
was 0.62 W, the stable pulse trains begin to appear. The maximum
output power of 298 mW and 341 mW were obtained with T = 1% and
T = 3% OC under the absorbed pump power of 2.56 W (Fig. 5). Fig. 6
describes that the stability of the two OC maximum output powers were
approximately 4.3% and 4.6% in 60 min. The pulse laser emission
spectra for the two different OCs were centered at 2063.8 nm and
2062.2 nm, respectively, and recorded by an optical spectrum instru-
ment (SOL-MS3504i) with a wavelength resolution of 0.34 nm (inset,
Fig. 6).

Fig. 7(a)–(d) show the pulse repetition rate, pulse width, single
pulse energy, and peak power as functions of the absorbed pump power
for different transmissions. The repetition frequency, single pulse en-
ergy, and peak power increased as the pump power increased in both
experiments; however, the pulse width became narrower. When using

Fig. 4. Schematic of the experimental facility for the PQS operations.
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Fig. 5. Output power versus the absorbed pump powers for CW and PQS.
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Fig. 6. Instability of the average output power measured during 60 min with
OCs. Inset: PQS laser emission spectra for two different OCs.
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T = 3% OC, the shortest pulse width was 837 ns, and the highest pulse
repetition rate was 35.5 kHz, leading to a pulse energy of 20.8 μJ and a
peak power of 7.43 W. Table 1 summarizes the detailed experimental
conclusions.

Fig. 8 depicts the typical pulse trains at the maximum average
output power captured by a 1 GHz digital oscilloscope (MDO4104C,
Tektronix) and a fast photodiode detector (ET-5000, Electro-Optics).
Finally, the M2 values of the Q-switched Ho: YLF laser with T = 3% OC
were measured with the 90/10 knife-edge way in Fig. 9 and estimated
as 1.5 and 1.6 for the horizontal and vertical directions, respectively.
We employed the NS2-Pyro/9/5-PRO (Photon) apparatus to record the

laser beam profile and the three-dimensional light intensity map, as
displayed in insets (a) and (b) of Fig. 9.

5. Conclusions

In conclusion, Ti3C2Tx MXene was successfully prepared herein by
the acid etching process and as SA employed in an in-band pumped Ho
pulse laser at 2.1 μm. The shortest pulse width of the Q-switched laser
was 837 ns. The maximum single pulse energy was 20.8 μJ at a re-
petition rate of 35.5 kHz. To the best of our knowledge, this is the first
report presenting a Ti3C2Tx-based PQS Ho: YLF laser by a Tm-doped
fiber laser pump. The results suggest the promising potential of Ti3C2Tx

as an efficient optical modulator for short-pulse lasers.
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Fig. 7. (a) Pulse durations, (b) repetition rates, (c) single pulse energies, and (d) peak powers as functions of the absorbed pump powers.

Table 1
Performances of the PQS Ho:YLF laser under different OCs.

Transmittance of the OC T = 1% T = 3%

Shortest pulse width/ns 986 837
Repetition rate/kHz 33.03 35.5
Peak power/W 6.65 7.43
Single pulse energy/µJ 16.69 20.8
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