Optimization of data acquisition parameters for single gamma line sensing: KSr$_2$I$_5$:Eu$^{2+}$ and NaI(Tl) compared

Eric Lukosia,b,*, Mikah Rusta,b, Luis Standc,d, Charles L. Melchera,c,d

a Department of Nuclear Engineering, University of Tennessee, 37996, United States
b Joint Institute for Advanced Materials, University of Tennessee, 37996, United States
c Scintillation Materials Research Center, University of Tennessee, 37996, United States
d Department of Materials Science and Engineering, University of Tennessee, 37996, United States

A R T I C L E I N F O

Keywords:
Ksr2I5
KSI
Gamma spectroscopy
Radiation detection
Time-to-detection

A B S T R A C T

KSr$_2$I$_5$:Eu$^{2+}$ scintillators exhibit better than 3% energy resolution at 662 keV and may be significantly less expensive to produce than other, similar energy resolution scintillators. However, KSr$_2$I$_5$:Eu$^{2+}$ exhibits a 6.5 Bq/cm2 intrinsic background from the presence of40K. This background is not only the well-known 1.46 MeV gamma, but also the 1.31 MeV end point of the beta spectrum. This paper computationally evaluates the optimum data acquisition parameters of KSR$_2$I$_5$:Eu$^{2+}$ and compares them to NaI(Tl) for the detection of single line gamma sources between 0.01–2.2 MeV with incident source strengths between 5 s$^{-1}$ and 100 s$^{-1}$ striking the detector. We found a strong dependence of the time-to-detection on the data acquisition parameters, where the time-to-detection of KSR$_2$I$_5$:Eu$^{2+}$ was 1–3 times larger than NaI(Tl) across the parameter space. The largest discrepancy observed was between 0.6 MeV and 1.2 MeV, where the intrinsic 1.31 MeV beta dominates the background.

1. Introduction

A new scintillator, KSR$_2$I$_5$:Eu$^{2+}$, or KSI, is under development as a low-cost, high-energy resolution radiation sensor. Literature suggests that KSI may be grown at several mm per hour with high yield and requires only inexpensive source materials [1,2]. The combination of low cost and decent energy resolution would be valuable to the detection of radioisotopes, as the detector energy resolution has been shown to be critical [3,4]. However, the presence of 40K results in an intrinsic radioactivity of \sim6.5 Bq/cm2. The decay of 40K results in beta emission 89.25% of the time and a 1.46 MeV gamma ray via electron capture 10.55% of the time [5]. The beta particle has a maximum energy of 1.31 MeV and peaks at 560 keV. Currently, it is unclear what effect the intrinsic radioactivity of KSI will have on its performance in detecting weak gamma-emitting sources.

While high energy resolution scintillators like Sr$_2$Eu$^{2+}$ [6,7] and LaBr$_3$:Ce$^{3+}$ [8,9] are available with no, or a much reduced, intrinsic radioactivity, respectively, they are considerably more expensive than NaI(Tl). While KSI will likely never be as inexpensive as NaI(Tl), its apparent faster growth rate and yield suggests it should be cheaper than its lower intrinsic background counterparts [10,11]. For this reason, we report here on the first computational evaluation of the effect of the intrinsic radioactivity of KSI on the time it takes to detect single line gamma rays. Specifically, the data acquisition parameters were systematically evaluated over a range of gamma ray energies and source strengths to identify the lowest time-to-detection (TTD) of single gamma lines and compare the results to a standard NaI(Tl) using the same methodology.

2. Methods

Comparison of the single gamma line sensing capabilities of KSI compared to NaI(Tl) is evaluated through using a region of interest around each gamma line [12]. The minimum TTD is computationally evaluated through a systematic evaluation of these data acquisition parameters: boxcar sum window (BCS), integration window around each gamma line \times [12] and the pulse height light tally to determine the rate of full energy deposition (i.e., photopeak efficiency).

* Corresponding author at: Department of Nuclear Engineering, University of Tennessee, 37996, United States.
E-mail address: elukosi@utk.edu (E. Lukosi).

https://doi.org/10.1016/j.nima.2019.05.085
Received 3 July 2018; Received in revised form 10 April 2019; Accepted 27 May 2019
Available online 3 June 2019
0168-9002/© 2019 Elsevier B.V. All rights reserved.
The MCNP6 simulations assumed a plane wave of incident gammas on the front face of each 1×1 inch cylindrical scintillator. The plane wave nature of the source removes the geometric dependency of the results on detector–source separation distances several times greater than the diameter/length of the detector. The source radiation strikes per second (sps) on the detector varied between 5 sps and 100 sps.

Rather than utilizing a single interval test, the TTD is evaluated with an equal distribution of background and source plus background time intervals plus twice the time width of the BCS. Instead of simulating thousands of randomly generated background and source counts per parameter space, we rely on the fact that using the average number of background and source counts expected at each sample will produce the same result as the number of simulations approach infinity. The BCS is defined as the sum of counts observed over some time interval, with the integration window of ±0.95σ. Overlaid on the image is a graphical depiction of an assumed Gaussian distribution of observed counts at each sample, where the green shaded region corresponds to the probability that the observed number of counts in that sample will pass the threshold. The inset on the top left is the corresponding sequential difference of the normalized probability of sample “i” passing the threshold.

The energy bin width is 0.6 keV for KSI and 0.7 keV for NaI(Tl). The number of bins is 4096 for each spectrum.

The threshold \(C_{th} \), defined in Eq. (2), is dependent on the FPR, where \(C_b \) is the average background rate expected for a given parameter space. The multiplier \(M \) was found by utilizing the cumulative Binomial probability distribution and requiring that the probability of observing two or more samples above the threshold in ten sequential samples is equal to the desired FPR. The FPR was evaluated at both 1% and 0.01%.

\[
C_{th} = C_b(1 + M)
\]

(2)

The number of observed counts per sample from each scintillator at each gamma energy and source strength was determined by summing over different areas of the photopeak region. Each photopeak was assumed to be Gaussian, and the integration window varied between ±0.25σ and ±4σ, in steps of 0.05σ. The width parameter \(\sigma \) was found using the detector energy resolution \((\sigma_E)\) at 662 keV \((\sigma_{E,SKI} = 3.5\%; \sigma_{E,NaI(Tl)} = 6.5\%)\) and appropriately scaled using their known resolution curves at each simulated gamma energy. The BCS varied between 10 and 150 samples \((1 \text{ s to } 15 \text{ s})\). The overlap of the observed counts at each sample with the FPR threshold defines the probability \(P_i \) of each sample causing a gamma source detection event. This is graphically displayed in Fig. 2 via the shaded area underneath the two Gaussian curves. Taking the sequential difference of the normalized \(P_i \), the most probable sample position \((i.e., \text{TTD})\) when the source is detected is found. The reported TTD is the minimum value found across the simulated integration window \((±0\sigma)\) for a given parameter space. To summarize, the simulated parameter space in this report is the BCS \((1 \text{ s to } 15 \text{ s})\), gamma source energy \((0.01 \text{ MeV to } 2.2 \text{ MeV})\), sps \((2.5 \text{ s}^{-1} \text{ to } 100 \text{ s}^{-1})\), integration window \((±0.25\sigma \text{ to } ±4\sigma)\), and FPR \((1\% \text{ and } 0.01\%)\).

3. Results

While the output of this computational study is extensive, we present a quantitative comparison between KSI and NaI(Tl) for two different source strengths \((15 \text{ s}^{-1} \text{ and } 50 \text{ s}^{-1})\). The output presented is the optimum integration window that minimizes the TTD for each parameter space and the corresponding ratio of the TTD of KSI to NaI(Tl). The former is important in defining the optimum data acquisition parameters for weak source detection using single gamma lines, valuable in developing more complex isotope identification algorithms. The latter provides a quantitative comparison of the effect of the intrinsic background of KSI on single gamma line sensing compared to NaI(Tl).

In Fig. 3, the optimum integration window that minimizes the TTD for 15 sps is provided. The optimum integration window for KSI is roughly equal to NaI(Tl) for low gamma energies, but becomes a little larger in the region where the \(1.31 \text{ MeV} \beta \) beta dominates the background for larger moving windows. This is due to the interplay between the source-to-background (S/N) ratio, threshold \(C_{th} \), and the normalized sequential difference of the probability \(P_i \) that minimizes the TTD. As an example, the background and source (photopeak) count rates as well as the threshold \(C_{th} \) at an integration window of \(±1\sigma\) and \(±1.3\sigma\) is provided in Table 1 for an incident 662 keV gamma ray at a source strength of 15 sps with a BCS of 1 s. In evaluating the data, the poorer energy resolution of NaI(Tl) results in a large observed increase in the background rate of 31.3%, which is mostly compensated by the large 30.4% increase observed for KSI due to its dominant internal background from the \(1.31 \text{ MeV}\) beta particle around 662 keV. The source rate for NaI(Tl) and KSI increases as the integration window increases by 18.2% and 17.7%, and \(C_{th} \) increases by 17.4% and 19.9%, respectively. From the observed changes, it would seem that the optimum integration window between these two options would be \(±1\sigma\) for KSI. However, the increase in source rate results in more overlap of the gross count rate \(C_i \) with \(C_b \), as the boxcar window moves across the point in time when the source is turned on, resulting in a faster TTD (see Fig. 2). Obviously, as the integration window...
The optimum integration window that minimizes the TTD in the chosen parameter space is larger for KSI than NaI(Tl) due to the need to optimize the S/N ratio in the region where the 1.31 MeV end point energy beta from 40K decay dominates the background spectrum of KSI. The blue vertical lines above 1.5 MeV are due to the transition between green and blue color bar legend regions and the effect of the low probability, high energy background gammas have on the optimum integration window. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The KSI-to-NaI(Tl) TTD ratio is provided in Fig. 5, where it is apparent that the internal 1.31 MeV beta of KSI increases the TTD by several multiples. For a sps of 15 s$^{-1}$ and a FPR of 0.01%, the TTD of KSI is two-to-three times larger than NaI(Tl) between 0.6–1.1 MeV, but decreases somewhat as the BCS window increases. For larger source strengths, the difference in the TTD between KSI and NaI(Tl) is less sensitive to the BCS. Additionally, the TTD ratio increases slightly as the BCS window width increases at a source strength of 50 s$^{-1}$, opposite of that observed at a source strength of 15 s$^{-1}$. Further, as the required FPR is reduced, the difference in TTD between NaI(Tl) and KSI is much less pronounced, but the same general trends in sps are observed.

Increasing the BCS increases the source-to-background count ratio as the window moves across the time domain. However, having a large window also results in a slower response of the system, where the TTD for a single gamma line at 1 MeV increases from 1.9 s to 3.6 s for KSI when the BCS width increases from 1.5 s to 10 s at a sps of 15 s$^{-1}$ and a FPR of 0.01% (see Fig. 6). For NaI(Tl), the TTD increases from 0.6 s to 1.4 s with the same change in parameter space. Further, the increase in the TTD ratio as the BCS increases at a sps of 50 s$^{-1}$ indicates that there is an overall minimum TTD ratio for the combination of BCS and sps. Above 1.5 MeV, KSI exhibits a better TTD than NaI(Tl), which is outside the range of the intrinsic background from 40K and is a consequence of the greater stopping power and better energy resolution of KSI. While a smaller BCS results in a faster TTD in all cases for both scintillators, it is also subject to more random noise. Although this source of uncertainty was not a subject of this investigation, a balance is required between the optimum data acquisition parameters and the actual TTD for a given application.

Table 1

<table>
<thead>
<tr>
<th>Detector</th>
<th>C_{th} (cps)</th>
<th>Source (Photopeak) rate (cps)</th>
<th>C_{th} (cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI(Tl)</td>
<td>0.16 \pm 0.21</td>
<td>1.87 \pm 2.10</td>
<td>2.21 \pm 1.32</td>
</tr>
<tr>
<td>KSI</td>
<td>1.61 \pm 2.10</td>
<td>2.03 \pm 2.39</td>
<td>4.36 \pm 5.23</td>
</tr>
</tbody>
</table>

Continuous to increase, the source rate increases at an ever slower rate compared to the background, resulting in C_{th} increasing to a degree that the TTD becomes larger. It is this interplay that has been optimized and presented in Fig. 3.

A two dimensional plot of the optimum integration window at 15 sps and 50 sps and a BCS of 1 s and 10 s at a FPR of 0.01% in Fig. 4 better illustrates the optimum integration window trend across the simulated source energies. In agreement with the aforementioned example, as the sps increases, the difference between the optimum integration window for KSI and NaI(Tl) in the 0.5–1.3 MeV range becomes less pronounced, and both shift upward slightly. Of note is the large increase in optimum integration window around 1.46 MeV, which is the gamma energy from 40K decay present in the background observed by both NaI(Tl) and KSI. The width of the band observed in Fig. 3 is larger for NaI(Tl) than KSI, which is a consequence of the better energy resolution of KSI. Finally, the effect of the FPR on the optimum integration window is minimal, varying on average by just a few step sizes ($\pm 0.05 s$) across the parameter space.
Fig. 4. Optimum integration window of KSI and NaI(Tl) for a BCS of 1.5 s (A)–(B) and 10 s (C)–(D) and a sps of 15 s$^{-1}$ (A) and (C) and 50 s$^{-1}$ (B) and (D) at a FPR of 0.01%. Here it can be observed that the optimum integration window of both KSI and NaI(Tl) are very similar, with KSI being slightly larger than NaI(Tl) for the lower sps of 15 s$^{-1}$ and in the region where the 1.31 MeV end point energy beta from 40K decay dominates the overall background of KSI. Further, increasing the BCS results in additional separation of the optimum integration window between the two.

Fig. 5. TTD ratio of KSI-to-NaI(Tl) as a function of the boxcar width and gamma energy. The evaluated source strength is 15 s$^{-1}$ (A) and C) and 50 s$^{-1}$ (B) and D)) for a FPR of 0.01% (A)–B)) and 1% (C)–D)). The TTD ratio is largest in the region where the 1.31 MeV beta from 40K decay dominates, particularly for a FPR of 0.01% and small BCS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
4. Conclusion

In this report, we presented a quantitative comparison via computational analysis of the time-to-detection of single gamma lines for the scintillators KSr$_2$I$_5$:Eu$^{2+}$ and NaI(Tl). The lowest time-to-detection was determined by identifying the optimum photopoint integration window for the parameter space (source striking strength, gamma energy, false positive rate, and boxcar window). We found that the optimum integration window was relatively insensitive to the desired false positive rate, but noticeable differences were apparent where the 1.31 MeV beta dominates the observed background in KSr$_2$I$_5$:Eu$^{2+}$. The time-to-detection for KSr$_2$I$_5$:Eu$^{2+}$ was larger than NaI(Tl) by a factor of one-to-three where the intrinsic background was present, the largest difference occurring between 0.6–1.2 MeV. The time-to-detection difference decreased as the acceptable false positive rate was increased from 0.01% to 1%, and KSr$_2$I$_5$:Eu$^{2+}$ was able to identify any single gamma line faster than NaI(Tl) at very low energies ($E_\gamma \lesssim 200$ keV) and above the beta end point energy ($E_\beta \gtrsim 1.3$ MeV). Although the parameter space was bounded, the results indicate that there is a global minimum TTD ratio between KSr$_2$I$_5$:Eu$^{2+}$ and NaI(Tl) between BCS and sps.

While the results indicate that KSI exhibits a higher time-to-detection than NaI(Tl) in this study, it does not represent a reduced capacity for isotope identification. The results presented merely indicate the expected optimum data acquisition parameters and associated time-to-detection of single gamma lines. Using this technique alone, the time-to-detection of KSI for 137Cs decreases from 0.46 s (662 keV only) to 0.403 s (662 keV and 32 keV), or by 12.4%. Correspondingly, NaI(Tl) decreases its time-to-detection from 0.221 s to 0.210 s when considering both photons from Cs-137, which is only a 5.0% decrease. However, it is demonstrated in the literature that more advanced techniques to isolate identification are available [3,14–19]. Some of these techniques may benefit from the results and/or methodology presented [15–19], and others clearly indicate that the better energy resolution and predictability of the intrinsic background will likely yield more favorable results [3,14]. Considering KSI, further investigation is required to identify the optimum isolation identification technique to maximize its value to the community, and whether its lower cost offsets its intrinsic background compared to other good energy resolution scintillators like SrI$_2$, Eu$^{2+}$.

Acknowledgments

This material is based upon work supported by the U.S. Department of Homeland Security under grant no. 2014-DN-077-ARI008-01. Disclaimer: The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

References