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� A CFD-based approach for
morphological characterisation of
porous structures is presented.

� The CaF2 structure is completely
characterised in terms of tortuosity
and connectivity.

� A Morphology Map is developed to
show the connection status of the
structure.

� The concept of Minimum Connection
Curve is introduced.

� Tortuosity and connectivity are
shown to be highly correlated with
the effective porosity.
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a b s t r a c t

A systematic methodology to characterise porous structure of membranes and catalysts in terms of tor-
tuosity and connectivity is presented. The considered case study is the CaF2-like structure of bidisperse
spherical particles (i.e., inner and outer particles with different diameters), which are allowed to overlap.
Consequently, the morphology of the resulting structure is shown to be completely determined by two
geometrical parameters (two degrees of freedom). For this investigation, a Morphology Map is developed,
it being a plot mapping void connection as a function of the characteristic geometrical parameters.
Within such a map, we introduce the so-called Minimum Connection Curve, which is a characteristic curve
representing the boundary between the connected region and the disconnected one (zero connectivity). It
is then found that the CaF2-like structure has three specific points where there is an abrupt change in the
morphology behaviour, also correlated to the normalised surface area. Then, the structure tortuosity and
connectivity are systematically evaluated in a wide range of geometrical conditions of the two parame-
ters characterising the considered structure. As a result, it is shown that it is not possible to express these
parameters as a unique function of porosity. However, both tortuosity and connectivity are found to be
correlated with a good approximation in a certain range of porosity values with a geometrical parameter
that we called Effective Porosity, which is the porosity available for diffusion at the minimum connection
conditions. Convenient empirical correlations are eventually provided to allow readers to evaluate tortu-
osity and connectivity in a wide range of values.
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Nomenclature

Symbols
a normalised surface area, –
C molar concentration, mol m�3

c1, c2 fitting parameters in Eq. (9)
D diffusion coefficient, m2 s�1

ds1 FCC particle diameter, –
ds2 SC particle diameter, –
d�s2 dimensionless SC particle diameter, –
J molar flux, mol s�1 m�2

L length of the unit cell edge, m
R2 determination coefficient
V volume, m3

w mass fraction, –
z axial abscissa, m

Greek symbols
d12 Surface-Surface distance between the nearest SC and

FCC particles
d�12 dimensionless Surface-Surface distance between the

nearest SC and FCC particles

e porosity, –
u connectivity factor, –
s diffusional tortuosity, –

Subscripts & superscripts
‘1’ referred to FCC particles
‘2’ referred to SC particles
a, b abscissae in the unit cell stack where high and low con-

centration are set
Eff effective (Porosity or Diffusivity)
i, j generic ith and jth species
Min minimum (Connection)

Acronyms
FCC Face-Centred Cubic
SC Simple Cubic
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1. Introduction

With the tremendous enhancement in fabrication of innovative
and more performing catalytic structures, membranes and hierar-
chical porous media, the importance of a more precise characteri-
sation of porous structures has become progressively more
important. The usual first characterization of a structure is made
by techniques like X-ray Diffraction (XRD), Scanning Electron
Microscopy (SEM), Field-emission Scanning Electron microscopy
(FESEM), Transmission Electron Microscopy (TEM) and Infra-Red
spectroscopy (IR), Dynamic Light Scattering (DLS) and Energy-
Dispersive X-ray spectroscopy (EDX), which provide important
information about morphology, crystallinity degree, defects, etc.

However, for some applications like catalysis, sorption and/or
membrane-assisted reaction/separation processes, such informa-
tion can be not enough for a precise understanding of the structure
role in processes to which they are applied. These considerations
assume a particular importance if considering that a structure
can change its morphology due to kinetic and transport
phenomena.

As an instance, during growth, a crystal structure is subject to
severe morphological changes, which the physical, mechanical,
catalytic, adsorption and optical properties depend on
(Sunagawa, 1999). Other examples are (i) sintering owing to
high-temperature or nucleation processes, where there is a merg-
ing and/or a spatial redistribution of surface areas and volumes
to form new shapes of different morphological properties (Gao
et al., 2012), and (ii) the so-called breathing phenomenon occurring
in some complex coordination particles like MOFs, where the
structure accomplishes the presence of external molecules by
changing its conformation (Schneemann et al., 2014). Therefore,
in most cases, a different and more transport phenomena-
oriented characterisation is required for porous media.

Among several morphological parameters of interest, tortuosity
is one of the most investigated properties. Although this parameter
is often considered as a fitting parameter to calculate by means of
non-linear regression and a number of empirical correlations with
porosity have been developed (Pisani, 2011), nevertheless it actu-
ally has a specific physical meaning related to the structure mor-
phology, providing crucial information about catalytic and
hierarchical porous structures (Zalc et al., 2004; Caravella et al.,
2012, 2016; Delarue and Jeulin, 2003; Coleman and Vassilicos,
2008; Wiedenmann et al., 2013; Moh’d, 2015; Landesfeind et al.,
2016) as well as biological systems for diagnosis purpose
(Herremans et al., 2015; Grisan et al., 2008; Maude et al., 2014;
Muraoka et al., 2014; Sasongko et al., 2015; Annunziata et al.,
2016).

The importance of tortuosity is stated by the number of papers
focusing on its evaluation carried out by means of different tech-
niques involving computational fluid dynamics (Shen and Chen,
2007; Caravella et al., 2012; Anovitz and Cole, 2015; Kong et al.,
2015; Bellini et al., 2018), lattice-Boltzmann (Matyka et al., 2008;
Duda et al., 2011; Wang and Boltzmann, 2014; Espinoza et al.,
2015) and Monte-Carlo simulations (Kim and Chen, 2006) imple-
mented on digitally-reconstructed models by computer-aided
tomography and other image reconstruction algorithms (Alam
et al., 2006; Promentilla and Sugiyama, 2007; Yamashita et al.,
2009; Gommes et al., 2009; Vallavh, 2009; Rezanezhad et al.,
2009; Szczepanski et al., 2010; Sobieski et al., 2012; Solórzano
et al., 2013; Manickam et al., 2014; Chen-Wiegart et al., 2014;
Berg, 2014; Ranachowski et al., 2015; Khabbazi, 2015; Farlenkov,
2015; Pawlowski et al., 2018). However, considering that the defi-
nition itself of tortuosity is not unique, its evaluation and related
experimental methodologies are not an easy task to face (see,
e.g., (Vogel, 1997; Vogel and Roth, 1998; Moreau et al., 1999;
Moldrup et al., 2001; Promentilla et al., 2009; Lichtner et al.,
2015; Melo, 2005; Le et al., 2010; Nwaizu and Zhang, 2015). Specif-
ically, the majority of literature papers are for the most focused on
(i) diffusional tortuosity (Kim and Chen, 2006; Ranachowski et al.,
2015; Promentilla and Sugiyama, 2007; Yamashita et al., 2009;
Gommes et al., 2009; Manickam et al., 2014; Chen-Wiegart et al.,
2014) and (ii) hydraulic tortuosity (Herremans et al., 2015; Alam
et al., 2006; Berg, 2014; Matyka et al., 2008; Duda et al., 2011;
Wang and Boltzmann, 2014; Vallavh, 2009; Rezanezhad et al.,
2009; Szczepanski et al., 2010; Sobieski et al., 2012), which are
defined based on effective diffusivity and hydraulic permeability,
respectively. These different definitions put in evidence an impor-
tant aspect: the type of tortuosity is determined by the particular
transport phenomenon with respect to which it is evaluated.

Remarkable examples of such a concept can be found in Yama-
shita et al. (Yamashita et al., 2009), where tortuosity is defined to
measure the quantity of sound waves through the material voids



a) Completely Connected Structure

b) Par�ally Connected Structure

c) Completely Disconnected Structure
Tortuosity = , Connectivity = 0

Fig. 1. General sketch of different connection situations. The disconnected voids are
highlighted in dark yellow. The dashed lines are the schematic representation of
average diffusional paths. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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(Yamashita et al., 2009), and in Brun et al. (2008), where tortuosity
is defined through the heat transfer (Brun et al., 2008). In the for-
mer, acoustic impedance measurements obtained from absorption
tests are used, whereas conductivity measurements are carried out
in the latter. Such tortuosity types are evidently different from
both the diffusive and the hydraulic one, as the transport of sound
waves as well as the transport of heat transfer, which in general are
able to ‘‘permeate” the solid walls of the porous media, acts differ-
ently from mass diffusion and convection. Since in our investiga-
tion we want to characterise the voids morphology in terms of
geometrical parameters, we have chosen to consider the diffu-
sional tortuosity, which has been already demonstrated to be a
function of geometrical properties only (Whitaker, 1977; Kim
et al., 1987; Quintard, 1993; Quintard and Whitaker, 1993;
Ciesko, 2009; Guo, 2012).

An important aspect to be underlined is that the diffusional tor-
tuosity is a scale-independent parameter and can be used to calcu-
late the effective diffusion coefficient in whatever diffusion regime.
In fact, even when the length scale is such that the molecule size is
comparable with the pore size, the diffusional tortuosity should be
used to correct the unconstrained (straight) diffusional paths to
match the actual pore path. The additional direction changes of a
diffusing molecule due to the impact with the pore walls do not
depend on geometry only and have to be considered in appropriate
transport models. Examples of this fact are (i) the Knudsen diffu-
sion model, whose diffusivity should be corrected with the pore
tortuosity even if already includes the mean constrained path of
the molecules, and (ii) the transport model through zeolite mem-
branes developed more recently in Caravella et al. (2016), where
a correction to the diffusional tortuosity of zeolite is introduced
to include the influence of species adsorbed on the pore walls
(Caravella et al., 2016).

Concerning connectivity, no standard definition exists in the lit-
erature and, thus, the few papers measuring/evaluating this
parameter use different approaches (Bellini et al., 2018;
Promentilla et al., 2009; Lichtner et al., 2015; Vogel, 1997; Vogel
and Roth, 1998; Moreau et al., 1999). In particular, Vogel (1997)
and Vogel and Roth (1998), used the Euler-Poincare characteristic
to quantify connectivity, whereas Moreau et al. (1999) measured
it by the propagation method. Later, Promentilla et al. (2009)
and, subsequently, Lichtner et al. (2015) used surface reconstruc-
tion techniques considering the number of connected voxels with
respect to standalone ones. However, those methodologies are
not applicable where a digital version of the structure is not
available.

More recently, our research group published a paper where a
direct relation between diffusional tortuosity and connectivity is
stated, defining the latter as the inverse of the former (Eq. (1))
(Bellini et al., 2018). Consequently, the connectivity factor defined
in Eq. (1) measures the degree of diffusional connectivity, which is a
geometrical property by definition.

Connectivity Factor / � 1
Tortuosity s

Limits :
/ ! 0 () s ! 1
/ ¼ 1 () s ¼ 1

� ð1Þ

Eq. (1) is based on the consideration that the structure voids are
poorly linked to each other in porous media with a high tortuosity
value.

This situation is briefly sketched in Fig. 1, which depicts a
sketch of different connection conditions in relation with tortuos-
ity. In particular, the definition reported in Eq. (1) incorporates the
concept that a porous structure having all voids that are non-
accessible (i.e., completely disconnected, Fig. 1c) must have a zero
connectivity, whose value should increase as voids become pro-
gressively more connected to each other (Fig. 1a and b). From a
physical point of view, this means that there are inner voids that
do not contribute to the transport phenomenon considered for
characterization (ordinary diffusion in this case). In practise, if a
hypothetical molecule were placed inside an isolated void, it would
remain entrapped in that void without being able to escape
(dashed closed paths in Fig. 1b and c).

In this context, the aim of our paper is to provide a general
methodology to characterise structures in terms of diffusional tor-
tuosity and connectivity degree evaluated by computational fluid
dynamic techniques. For this purpose, the CaF2-like structure is
chosen as a case study, even though the proposed methodology
can be applied as well to every regular and irregular structures pro-
vided the availability of appropriate representative three-
dimensional models.

The considered CaF2-like structure is involved in important
when hydrogen atoms form hydrides within FCC metals like palla-
dium. In fact, at relatively low energy levels (lower H-
concentration in the lattice) the H-atoms preferentially occupy
the octahedral sites within the original FCC unit cell, whose config-
uration corresponds to the NaCl-like structure. However, at a suffi-
ciently high-energy level (high H-concentration in the lattice) the
H-atoms prefer to occupy the tetrahedral sites, thus leading to a
CaF2 atomic structure (Fukai, 1984). The latter situation corre-
sponds to high-pressure conditions, which are of interests for
industrial application in hydrogen purification and/or storage.



Table 1
Geometrical parameters set to build the CaF2 structures.

Parameter Description Units

ds1 Diameter of the outer FCC particles [m]
ds2 Diameter of the inner SC particles [m]
ds2 Surface- Surface interparticle distance between two

closest FCC and SC particles
[m]

Table 2
Dimensionless geometrical parameters related to the degrees of freedom of the CaF2
Structure.

Parameter Definition Description

d�
s2 ds2=ds1 Dimensionless diameter of the inner SC particles

d�12 d12=ds1 Dimensionless interparticle distance
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Therefore, the need of fundamental understanding of the hydrides
structural morphology assumes a crucial importance. To the best of
the Authors’ knowledge, the study presented in this paper is the
first example of complete and systematic characterization of the
CaF2 structure in terms of tortuosity and connectivity, showing
that even apparently simple structures can hide interesting and
intriguing aspects, which have to be studied in a more detail with
the objective to withdraw information to better understand the
behaviour of more complex structures. The following sections pro-
vide the details of our analysis.

2. Description of the system

The CaF2 structure is composed of a Face-Centred Cubic (FCC)
structure containing a Simple Cubic (SC) structure whose vertices
are placed at the centres of the FCC inner tetrahedral sites (blue
particles, Fig. 2a). In this study, we consider spherical particles
with two different diameters for the outer FCC structure and inner
SC one, respectively. Therefore, once the two particle diameters
and a length of another geometrical entity like the surface-
surface distance between the closest SC and FCC particles are set
(as done in the present investigation), the structure can be univo-
cally built (Table 1). However, the length of a particle diameter is
just needed to set the scale of the actual geometry. Accordingly,
once the scale is set, the geometry depends just on the two dimen-
sionless geometrical parameters (bidisperse structure) reported in
Table 2, where the diameter of the FCC particles is chosen as the
reference length with respect to which to normalise the others.
The choice to work with dimensionless parameters assures that
the obtained results are scale-independent, which is in line with
the fact that the morphological properties of a structure (like
porosity, tortuosity and connectivity) must not depend on the par-
ticular scale chosen.

In order to analyse in detail the morphology changes as a func-
tion of the spatial distribution of the exposed particle surface, the
values of d�

s2 and d�12 are let vary to allow the investigation of both
non-overlapping and overlapping structures. With this choice, the
edge of the unit cell L is expressed as a function of the characteris-
tic geometrical parameters as follows (Eq. (2)):

L ¼ 2
3

ffiffiffi
3

p
ds1ð2d�12 þ d�

s2 þ 1Þ ð2Þ
Fig. 2. Examples of unit cells relative to CaF2-like structures of spherical particles displa
than the FCC-structured ones.
As well, porosity does also depend on these two parameters,
even though that functionality is too complex to be expressed ana-
lytically in the case of overlapping particles. This aspect is
remarked since a plenty of papers in the literature attempt to find
convenient relationships between tortuosity and porosity (Pisani,
2011), which however is not possible in general. That can be done
just in some specific cases, like for monodisperse structures of
spherical particles (Caravella et al., 2012), in the limit of unitary
porosity (Maxwell, 1881) and for an infinitely-disperse swarm of
particles (Neale and Nader, 1973). For what said before, in the pre-
sent case there cannot be a bijective relationship between porosity
and tortuosity, as shown later in Section 4. To highlight the com-
plexity of the investigated structures, Fig. 3 shows some examples
of possible configurations, where the visualised volume represents
the void space available for diffusion. As shown later, these struc-
tures can be considered to belong to four different morphological
families, which are identified by a morphology map, as described
in detail in Section 4.1.

3. Simulation settings

3.1. Computational fluid dynamic approach

As mentioned above, tortuosity is evaluated by solving the pure
diffusion problem within the considered porous structures using a
yed in two general cases: Internal SC-structured particles (a) smaller and (b) larger



Fig. 3. Examples of unit cells investigated for certain values of d�
s2 and d�12.

Fig. 4. Boundary conditions set for simulation. The considered structure example corresponds to d�
s2 = 0.75; d�12 = �0.20, which is shown for convenience of the readers.
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computational fluid dynamics-based methodology. The pure diffu-
sion problem is implemented through Fick’s law (Eq. (3)), which is
used as the constitutive equation for the molar flux of a homoge-
neous binary gas mixture inter-diffusing within the structure
voids:
Ji ¼ �DijrCi ð3Þ

where Dij is the free diffusivity in a fluid without obstacles and rCi

is the concentration gradient. It is important to remark that the dif-
fusional tortuosity is a geometrical property and, thus, its value
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does not depend on the particular methodology used here for its
evaluation.

Simulations are performed using the software COMSOL MULTI-
PHYSICS�, which provides the average diffusive flux between the
two faces where the two concentration values are set. From such
information, the effective diffusivity is calculated as follows (Eq.
(4)) (Caravella et al., 2012; Bellini et al., 2018):

Dij;Eff ¼ � JiDz
DCi

� AVoid

ATotal
ð4Þ

where DCi, Dz, Avoid and ATotal indicate concentration difference, dis-
tance between the faces where high and low concentrations are set,
cross-sectional area available for diffusion (i.e., void area) and the
total one (i.e., the nominal square area of a cell face). Then, tortuos-
ity is calculated as follows:

s ¼ e
Dij

Dij;Eff
ð5Þ
Table 3
Simulation Parameters.

Parameter Description Value

wa Higher mass fraction 2 � 10�4 mol m�3

wb Lower mass fraction 1 � 10�4 mol m�3

Dij Binary diffusion coefficient 1 � 10�7 m2 s�1

Table 4
Parameters of mesh-independency analysis.

Parameter Finer mesh Coarser mesh Units

d�
s2 0.5 [–]

d�12 �0.11 [–]
Maximum element growth rate 2 1.5 [–]
Curvature factor 0.06 0.1 [–]
Resolution of narrow region 1.33 1 [–]

Tortuosity s Finer mesh Coarser mesh Difference

2.32805 2.32341 0.2%

Fig. 5. Sensitivity of tortuosity
As for the Connectivity Factor u, it is evaluated as the inverse of tor-
tuosity, as indicated in Eq. (1). To minimise the computational
errors owing to possible perturbations in the diffusion streamlines,
assemblies of two or three unit cells are used in all simulations.

Fig. 4 shows an example of built assemblies along with the
boundary conditions set for simulation, for which the impenetra-
bility of the particle walls (no flux) is set together with symmetry
on the flat lateral boundaries of the cell stacks and concentration
values on the respective bases (see Table 3).
3.2. Mesh settings

The computational mesh required for simulation is generated
using the settings shown in Table 4, reporting the key-
parameters characterising the meshing process. In order to assure
that the obtained results are independent of the mesh type, we
have preliminarily set two simulations at the same operating con-
ditions but with different meshing parameters, corresponding to a
finer and a coarser mesh, respectively. The former has at least eight
elements filling the shortest surface-surface distance in the struc-
ture (Fig. 5a), whereas the latter has four elements (Fig. 5b). As a
result, the difference of the so-calculated tortuosity values is
around 0.2%, which is an acceptable tolerance for our purpose.
Anyway, to be conservative, we have applied the criterion of the
eight elements (finer mesh) to the meshes built in all simulations.
4. Results and discussion

4.1. Morphology map

In Fig. 6a, we present the here-defined Morphology Map of the
considered structure, which is built in terms of minimum value
of d�12 (here indicated with d�12;min) vs. d�

s2. This plot arises from
the consideration that, as mentioned above, the morphology of a
bidisperse structure of spherical particles has two degrees of free-
dom. Therefore, if we fix the value of one parameter letting the
to mesh. Porosity = 0.2474.



Fig. 6. Morphological map of the CaF2-like structure. The figures is split into two
parts for a better readability.
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other one vary within a sufficiently wide range of values, we obtain
a continuous curve. We remark that this is generally valid for
whatever bidisperse structure, thus being not limited to the struc-
ture considered in the present work. In this specific case, each
point of the curve is obtained by fixing a certain value of d�

s2 and
evaluating the corresponding unique specific value of d�12 (d�12;min)
below which the structure voids are completely disconnected in
the sense reported above (Fig. 1c). Therefore, making d�

s2 vary over
an appropriate interval of values, we obtain a curve representing
the boundary between two morphological regions, whose struc-
ture is characterised by connected and completely disconnected
voids, respectively. All points along the curve correspond to what
will be referred to as minimum connection conditions throughout
the present paper.

The presented map, shown here for the first time in the open lit-
erature to the best of our knowledge, is numerically obtained by an
in-house user-defined function just developed for this purpose
and, furthermore, is completely general and cover all the possible
morphologies of CaF2-like structures of spherical particles, whence
the reason of its name. In the limit of d�

s2 tending to zero, the curve
tends to the value of d�12;min of the FCC structure, as the internal SC

particles in practise disappear. Differently, in the opposite limit (d�
s2

tending to infinity), the curve tends to infinity and not to the value
of the SC structure. This occurs because the presence of the outer
FCC particles limiting the boundaries of the unit cell is unavoidable
even if their diameter is almost null. Moreover, there exist three
characteristic points of the curve, which are denoted in red and
evidenced in the zoom views in Fig. 6b. As we are going to demon-
strate, these points are actually cusp points in a mathematical
sense, because the structure is subject to a more or less abrupt
morphology change in their correspondence.

The demonstration of whether these points are really cusps
or not is required as the curve is obtained numerically. In fact,
for example, the point corresponding to the Cusp2 could be a
minimum with a null derivative, instead. This represents not
just a merely numerical issue but rather an important morpho-
logical aspect. Let us remark that, from a mathematical point of
view, a cusp is a point where a curve is continuous but not
derivable; in practise, the right derivative is different from the
left one.

To demonstrate that these points are cusps, we report the
morphology evolution of the structure for certain values of d�

s2

on the Morphology Map (Fig. 7). As can be observed by following
the structures from the picture (a) on, the position of the red cir-
cles indicating the detachment points change from (d) to (e). This
indicates that the morphology behaviour before (d) and after (e)
are different, thus generating the Cusp1 reported in Fig. 6b. Going
on along the curve, the structure morphology passes from (i) to
(j), where the position of the detachment point is the same, but
its shape is different, as shown in the zoomed detail. Since such
shapes are quite different from each other, the consequent gener-
ated Cusp2 is more pronounced than the Cusp1. Finally, when the
structure experiences the morphology change from (p) to (q),
again the detachment point changes position, thus resulting in
the Cusp3. Considering that Cusp1 and Cusp3 are caused by differ-
ent positions of detaching points, it thus means that from a phys-
ical point of view there are two detachment points at such cusps
at the same time. Differently, the structure corresponding to
Cusp2 has the peculiarity to detach at the same point discontinu-
ously. These aspects can be also observed in Fig. 8, where nor-
malised surface area (a, see Eq. (6)) and porosity are evaluated
as functions of d�

s2 at minimum connection conditions (aMin and
eMin, respectively). In particular, the cusps appear more evidently
in the two curves, especially in that of the normalised surface
area.

a � ExposedArea
Area of theUnit Cube

����Unit
Cell

ð6Þ

Interestingly, both amin and emin show trends of similar shapes,
exhibiting a maximum at a value of d�

s2 close to the unity. This indi-
cates that the unit cell of the CaF2-like structure has the highest
specific surface area and the highest porosity when the diameters
of the outer FCC particles and the inner SC ones are equal, which
corresponds to the case of a monodisperse structure. The other rel-
ative maximum is located at around d�

s2 equal to 0.5, corresponding
to the case where the inner particles have a diameter half of the
outer ones. It can be also noticed that, among all cusp points, Cusp2

shows the highest porosity emin, followed by Cusp1 and Cusp3. The
physical meaning of this behaviour can be understood by consider-
ing that a single detaching position (Cusp2) generates bigger dis-
connected ‘‘islands”, whereas in the other cases (Cusp1 and
Cusp3) the islands are smaller. Such a concept seems to be con-
firmed by the fact that Cusp1 shows a lower number of islands than
Cusp3 in the unit cell, which again favours the formation of bigger
islands. As for the normalised surface area amin, the order is the fol-
lowing: Cusp2 > Cusp3 > Cusp1, which is slightly different from the
porosity trend. In fact, also in this case Cusp2 shows the highest
amin, but the Cusp3 value overcomes the Cusp1 one. The explana-
tion for that lies in the formation of a higher number of islands
for Cusp3 generating a higher exposed area.



Fig. 7. Evolution of the morphology at minimum connection conditions value as a function of d�
s2 = {(a): 0.05, (b): 0.07, (c): 0.09, (d): 0.10, (e): 0.20, (f): 0.30, (g): 0.50, (h): 0.60,

(i): 0.65, (j): 0.75, (k): 0.90, (l): 1.00, (m): 1.25, (n): 1.50, (o): 2.50, (p): 3.00, (q): 3.40, (r): 4.00}. The red circle in each scheme indicates the point of the structure at which the
detachment occurs by decreasing the value of d�12. When the position of the detachment point changes from a structure to the successive one, the corresponding cusp appears
in Fig. 6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Tortuosity and connectivity evaluation

After investigating the CaF2-like structure in terms of the previ-
ously presented geometrical properties, the morphological analysis
is carried out by evaluating parameters more related to transport
properties, i.e., tortuosity and connectivity of the structure. For this
purpose, we performed simulations letting the values of d�

s2 and d�12
vary independently of each other. Fig. 9 shows an example of sim-
ulation results in terms of concentration profiles, from which the
tortuosity values are evaluated. As the unit cell is isotropic, in this
case it is not necessary to consider other directions along which to
set the concentration difference, as demonstrated in Caravella et al.
(2012). The tortuosity trends are depicted in Fig. 10 as a function of
d�12 for different values of d

�
s2. Looking at the behaviour of the single

curves, we can observe that all trends tend to the maximum poros-
ity value (e? 1) for increasing d�12, which corresponds to a situa-
tion where the inter-particle distance becomes gradually larger.
Differently, they tend to infinity as d�12 approaches the minimum
connection value (d�12 ! d�12;min), at which there are no voids con-
nected to each other (see Fig. 1c).

To show the functionality of tortuosity with d�
s2, Fig. 10 is split

into two different plots (Fig. 10a and b), which show the trends
corresponding to values of d�

s2 lower and higher than Cusp2 (0.72
ca.), respectively. As we can observe, the tortuosity behaviour
before Cusp2 is different from that after it. In fact, in the former
case tortuosity increases with decreasing d�

s2 , whereas in the latter
the opposite trend is observed, which means that tortuosity shows
a minimum with d�

s2. It is interesting to notice that the other two
cusps (Cusp1 and Cusp3) do not provide such a peculiarity, which
is explained by considering that Cusp2 is the only one among the
others that is a local minimum in the morphology map depicted
in Fig. 7. Overall, we can observe that all the trends are clearly



Fig. 8. Normalised surface area and porosity as functions of d�
s2 evaluated at

minimum connection conditions.

Fig. 9. Example of simulation results in terms of concentration profiles in a stack of
two unit cells.

Fig. 10. Tortuosity as a function of d�12 for different values of d
�
s2. The curves are split

into two different plots for a better readability.

Fig. 11. Tortuosity and Connectivity Factor as functions of porosity for all the cases
considered in this work. The ideal analytical trend corresponding to the case of
infinitely-disperse swarm of particles developed by Neale and Nader (1973).
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recognisable and do not intersect each other, which means that
tortuosity cannot be univocally expressed as a function of just a
single geometrical parameter. We remark this aspect because a
number of literature works aim to correlate tortuosity with a single
geometrical parameter like porosity. However, this cannot be gen-
erally done unless for particular structures, such as: (a) monodis-
perse structures of spherical particles (Kim and Chen, 2006;
Caravella et al., 2012), (b) structures in the high-porosity limit
(Maxwell, 1881) and (c) and infinitely-disperse structures (Neale
and Nader, 1973).

This is evidenced in Fig. 11, where tortuosity is shown as a func-
tion of porosity along with the connectivity factor (Eq. (1)). The
apparent irregularity of these plots is because porosity is itself
function of d�

s2 and d�12. In practise, the same tortuosity values pre-
viously reported in Fig. 10 are here shown in Fig. 11a. However,
although tortuosity and connectivity cannot be univocally deter-
mined from just porosity in the whole porosity range, we found
that this can be done with a very good approximation within a
porosity range of 0.47–1, where Neale and Nader’s model (Neale
and Nader, 1973), which is formally coincident with Maxwell’s
one (Maxwell, 1881), is able to predict relatively well tortuosity
and connectivity values within a maximum error of around 1.5%.
Furthermore, from the trend depicted in Fig. 11, it can be observed
that Neale and Nader’s model represents the lower bound for tor-
tuosity and, thus, the upper bound for connectivity. This fact repre-
sents an interesting aspect, as an infinitely-disperse swarm of
particles has the characteristic of decreasing its porosity by keep-
ing a completely connected structure (Fig. 1a). In practice, that
ideal structure can be thought to be composed of progressively
smaller particles filling the voids between the bigger particles. In
such a virtual filling process, the structure porosity can gradually
decrease tending to zero meanwhile keeping void inter-particle
space available for diffusion. This is the physical reason why Neale
and Nader’s virtual structure shows the highest connectivity value
and the lowest tortuosity.

4.3. Empirical correlations of tortuosity and connectivity with porosity

With the aim to try to find a satisfactory correlation between
tortuosity/connectivity values and a single geometrical parameter,
we define the here-called effective porosity (eEff) as the subtraction
of the minimum porosity from the standard porosity (Eq. (7)).

eEff ¼ VVoid � VMin

VTotal
¼ e� eMin ð7Þ



Table 5
Fitting output based on Eq. (9) using data of connectivity factor.

Parameter Description Value

c1 Fitting parameter 0.301354
c2 Fitting parameter 0.90220
R2 Determination coefficient 0.9862

Applicability range 0:15 6 eEff 6 1
Maximum error �10%
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This definition for the effective porosity as well as its use as
characteristic geometrical parameter is driven by the fact that tor-
tuosity tends to infinity for porosity tending to the minimum one.
It must be pointed out that the concept of effective porosity intro-
duced here is different from the expression introduced by
Wiedenmann et al. (2013), who defined an effective diffusivity as
the product of the total porosity and constrictivity factor, with
the latter taking into account the bottlenecks arising from reduced
channel area. However, there are some conceptual analogies
between the two parameters, because also in our case the area
available for diffusion becomes gradually smaller as porosity
decreases up to the minimum connection conditions, where the
pore constriction is maximum and there exists no path connecting
the structure voids. As the structure considered here is regular, the
minimum connection condition (i.e., zero-connectivity in this
specific case) is reached at specific porosity values, whereas in
irregular ones the bottlenecks closing the diffusional paths arise
gradually depending on the particular statistical distributions of
the voids. Anyway, with the definition reported in Eq. (7), it is
straightforward that all tortuosity values tend to infinity as eEff
tends to zero, as briefly reported in Eq. (8).

lim
e!eMin

s ¼ þ1 ) lim
e�eMin!0

s ¼ þ1 ð8Þ

The resulting plots are shown in Fig. 12 in terms of tortuosity
and connectivity factor. In this figure, the data are reported using
both log-linear and log-log scales to allow visualising the situation
at low values of effective porosity. An interesting aspect to notice is
the higher correlation degree of tortuosity and connectivity with
respect to the values reported in Fig. 11, at least within the eEff
range of (0.1–1), which corresponds to a range of interest for
adsorption and catalysis application. Anyway, it can be observed
that the correlation degree decreases with decreasing porosity,
which means that the parameter eEff is not adequate to describe
tortuosity and connectivity factor in the whole range of values.

To attempt to obtain a simple expression by which to evaluating
tortuosity and connectivity factor in a convenient range of values,
Fig. 12. Tortuosity and Connectivity Factor as functions of the effective porosity.
The continuous curve in the connectivity factor plot is a fitting curve (Eq. (9)),
whereas that depicted in the tortuosity plot is simply drawn as the inverse of the
fitting curve (Eq. (10)).
an appropriate empirical expression for connectivity as a function
of the effective porosity is proposed (Eq. (9)).

u ¼ 1

1þc1
1�eEffð Þ
e
c2
Eff

0:15 6 eEff 6 1

8><
>: ð9Þ

For this purpose, the data relative to the connectivity factor are
chosen to carry out the regression procedure due to a major
robustness of fitting calculation, as such a parameter is comprised
within the range (0,1), whereas tortuosity does not have an upper
bound (infinity). The form of such a two-parameter expression is
chosen with the guideline that tortuosity, which is in fact the
denominator in Eq. (9), have to tend to the unity as eEff approaches
the unity and to infinity as eEff approaches zero. As for the curve
relative to tortuosity, it is constructed by simply taking the inverse
of Eq. (9) as expressed in Eq. (10), which means that no regression
is carried out for tortuosity data.

s ¼ 1
u ¼ 1þ c1

1�eEffð Þ
ec2
Eff

0:15 6 eEff 6 1

8<
: ð10Þ

The regression results are reported in Table 5, where the satis-
factory value of determination coefficient R2 can be observed.
However, although the values of the fitting parameters are calcu-
lated by regression considering the whole eEff range, we recom-
mend using Eq. (9) to evaluate connectivity within the eEff range
of (0.15–1), which provides a maximum error of 10%.

5. Conclusions

In this investigation, a systematic and general morphological
characterisation of the CaF2-like structure of spherical particles
was carried out by computational fluid dynamics simulation. In
particular, the structure behaviour was deeply analysed as a func-
tion of the two parameters that completely characterise the con-
sidered geometry (bidisperse structure), permitting particles to
overlap. This allowed the number of different morphologies to be
clearly identified and studied.

From such an analysis, we developed the concept of what we
called Morphology Map of the structure, in which we introduced
theMinimum Connection Curve, representing the locus of the points
below which the internal voids are completely disconnected from
each other. This map is a sort of fingerprints of the CaF2 structure,
which is found to be characterised by three characteristic abrupt
morphology changes, represented by cusp points, whose existence
was demonstrated by showing the morphology evolution along the
minimum connection curve. The cusps were also shown in terms of
porosity and normalised surface area at the same conditions.

Furthermore, analysing the behaviour of the normalised surface
area, we found that there is the maximum surface area where inner
(Simple Cubic) and outer (Face-Centred Cubic) particles of the
structure has the same size (diameter), which corresponds to a
mono-disperse structure.

Afterwards, tortuosity was calculated in a wide range of values
of the two geometrical parameters characterising the considered
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structure. The obtained results allowed us to show that the tortu-
osity of bidisperse regular structures cannot be expressed as a
function of porosity only, which confirms that tortuosity is in fact
an independent morphological property.

Furthermore, from the consideration that tortuosity can be
thought as a measure of the difficulty for the structure voids to
be connected to each other, we used the definition of connectivity
factor introduced in Bellini et al. (2018) as the inverse of tortuosity
to quantify the structure connectivity. Moreover, the expression
valid for a swarm of infinitely-disperse particles (Neale and
Nader, 1973) was confirmed to be the lower bound for tortuosity
and, thus, the upper bound for connectivity.

Finally, with the aim to find a good correlation between tortu-
osity and an appropriate geometrical parameter allowing a rela-
tively easy calculation, we defined an effective porosity as the
subtraction of the minimum porosity from the nominal one, pro-
viding an empirical correlation for tortuosity valid within a rela-
tively wide range of values (0.15–1) usable with a maximum
error of 10%.

The presented analysis allows a more precise characterisation
of catalytic structures and membranes, putting in evidence hidden
aspects relating morphology with surface area and connectivity
and contributing in describing more effectively kinetic and trans-
port phenomena involved in membranes and porous media.
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