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a b s t r a c t

This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field

strength Dq, Racah parameter B and C were calculated to be 1408 cm�1, 608 cm�1 and 3054 cm�1,

respectively. The absorption cross sections sa of 4A2-
4T1 and 4A2-

4T2 transitions were 3.74�10�19

cm2 at 499 nm and 3.21�10�19 cm2 at 710 nm, respectively. The emission cross section se was

375�10�20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of

176 nm (2179 cm�1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser

gain medium.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Since tunable solid-state lasers have a wide field application in
medicine, ultra short pulse generation, environment and commu-
nication [1,2], research on Cr3+-doped tunable solid-state laser in
the visible and near infrared spectrum has generated strong
interest. The Cr3+ as a active ion tends to be incorporated into
environments which are octahedrally coordinated by ligands.
Since in an oxide compound with general formula A2(BO4)3

(A ¼ Al, Sc; B ¼W, Mo) there are AlO6 and ScO6 octahedron,
A2(BO4)3 (A ¼ Al, Sc; B ¼W, Mo) compounds can be considered as
the Cr3+-doped host materials. The spectroscopic properties of
Cr3+:Al2(WO4)3 and Cr3+:Sc2(WO4)3 crystals were investigated as a
tunable solid-state laser material [3,4]. Sc2(MoO4)3 crystal belongs
to the orthorhombic symmetry with space group Pnca [5–7]. This
paper reports the optical properties of Cr3+:Sc2(MoO4)3 crystals.
2. Experimental procedure

Cr3+:Sc2(MoO4)3 crystals were grown from a flux of Li2Mo2O7

by the top seeded solution growth (TSSG) method at a cooling rate
1–2 K/d and a rotating rate of 4.5 rpm. The Cr3+ ions concentration
in Cr3+:Sc2(MoO4)3 crystal was determined to be 0.61 at% by ionic
coupled plasma (ICP) spectrometry. A sample with dimension of
5�4�2 mm3 was cut from as-grown crystal for spectral
ll rights reserved.
measurement. The absorption spectrum was recorded using a
Perkin-Elmer UV–vis–NIR Spectrometer (Lambda-900) at room
temperature. The fluorescence spectrum and fluorescence lifetime
were measured using an Edinburgh Instruments FLS920 spectro-
photometer with a continuous Xe-flash lamp and R928-P detector
at 300 and 10 K.
3. Experimental results and discussion

Fig. 1 shows the absorption spectrum of Cr3+:Sc2(MoO4)3

crystals. Two broad absorptions with peak at l ¼ 499 and
710 nm are due to the 4A2-

4T1 and 4A2-
4T2 transitions of Cr3+

ions, respectively. The two structures on either side of the 4T2

absorption peak are due to absorption into the 2T1 and 2E states,
which show up as Fano antiresonance structures [8,9]. We take
the dips in the absorptions as approximate values of the positions
of the 4A2-

2T1,
2E transitions. The absorption cross sections sa of

4A2-
4T1 and 4A2-

4T2 transitions were estimated to be
3.74�10�19 cm2 at 499 nm and 3.21�10�19 cm2 at 710 nm,
respectively.

The Cr3+ ions substitute at Sc3+ site in Sc2(MoO4)3, where the
symmetry is approximately octahedral. The peak energy of the
4A2-

4T2 band measures 10Dq [10], thus the Dq was measured to
be 1408 cm�1 from the spectrum of Fig. 1. The energy at the peak
of the 4A2-

4T1 band depends on both Dq and B [11]. The B can be
calculated by the following equation [10]:

B

Dq
¼
ðD=DqÞ2 � 10ðD=DqÞ

15ðD=Dq� 8Þ
ð1Þ
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Fig. 1. Absorption spectrum of Cr3+:Sc2(MoO4)3 crystal at 300 K.

Table 1
Comparison of crystal field parameters for Cr3+:Sc2(MoO4)3 with other Cr3+-doped

crystals.

Material Dq (cm�1) B (cm�1) Dq/B C (cm�1) C/B

Al2O3 [13] 1664 640 2.6 3300 5.2

YAB [14] 1680 672 2.5 3218 4.8

GAB [15] 1695 673 2.52 3380 5.0

YSB [15] 1539 644 2.39 – –

GSB [15] 1563 638 2.45 – –

LSB [16] 1529 675 2.27 3448 5.1

GSGG [17] 1563 638 2.45 – –

Sc2(WO4)3 [4] 1449 630 2.3 – –

Al2(WO4)3 [4] 1495 650 2.3 – –

Sc2(MoO4)3 1408 608 2.32 3054 5.0
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Fig. 2. Photoluminescence spectrum of Cr3+:Sc2(MoO4)3 measured excitation with

710 nm radiation at 300 and 10 K.
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where D is the difference in energy at the peaks of the two
4A2-

4T1 and 4A2-
4T2 bands, which is 5955 cm�1. Substituting

the measured values of Dq and D into Eq. (1), the value of B was
calculated to be 608 cm�1, from which the value of Dq/B was
calculated to be 2.32. To calculate C requires a knowledge of the
energy of the 2E level, E(2E). C is obtained from the formula [10]:

Eð2EÞ ffi 3:05C þ 7:90B� 1:80B2=Dq ð2Þ

for the range of values 1.5oDq/Bo3.5 and 3oC/Bo5, where E(2E)
is the dip energy 13643 cm�1 (733 nm) of broad band 4A2-

4T2

transitions of Cr3+ ions in Cr3+:Sc2(MoO4)3 crystal[12]. Using
obtained values of B and Dq, the C was calculated to be 3054 cm�1.
The values of Dq, B and C for Cr3+:Sc2(MoO4)3 crystal are compared
with other laser gain media in Table 1.

Fig. 2 shows the fluorescence spectrum of Cr3+:Sc2(MoO4)3

crystals at 300 and 10 K. The dominant feature of fluorescence
spectrum of Cr3+:Sc2(MoO4)3 crystal is a broad band with a peak
at 880 nm and a full width at half maximum (FWHM) of 176 nm
(2179 cm�1) corresponding to 4T2-

4A2 transition at 300 K. On
cooling to 10 K, the fluorescence spectrum is still broad emission,
showing that the 4T2 zero-vibrational level is below the 2E level.
The weak field site in Cr3+:Sc2(MoO4)3 crystal gives rise the Cr3+

fluorescence in the 4T2-
4A2 transition.

As well known, in the Cr3+-doped tunable laser crystals the
fluorescence line shape as a function of temperature is deter-
mined by the energy splitting DE ¼ E(4T2)�E(2E), where E(4T2) is
the energy of the zero-vibrational 4T2 state[17]. When the value of
DE is large positive, the 4T2 level is above 2E level, the R-line and
its vibronic sideband is only observed. For example, the laser
action of ruby (Cr3+:Al2O3) is driven by the 2E-4A2 R-line
emission; for large negative value of DE the 4T2 level is below 2E
level, the broad emission band of 4T2-

4A2 transition is only
observed as observed for Cr:LiCAF and Cr:LiSAF crystals; when the
value of DE is close to DEE0, the observed emission band shape is
an intimate m�elange of R-line and the broadband process. For
Cr3+:Sc2(MoO4)3 crystal, the peak of the 4A2-

4T2 absorption
corresponds to a transition into a higher vibrational level 4T2 state,
and does not give the zero-phonon-transition level. Very approxi-
mately, one can predict that the position of the 4A2-

4T2

zero-phonon transition is midway between the absorption and
emission peaks, approximately 12724 cm�1 above the 4A2

level. Then, DE ¼ �918 cm�1. Therefore, the 4T2 level is below
the 2E level, and a broad emission should be observed at all
temperatures.

The emission cross section se was calculated using the formula
[11]

se ¼
l2

4p2tf n2Dv
ð3Þ

where l is the wavelength of emission peak, n the refractive index
which was estimated to be 2.0 by Abbe retractometer at 589 nm
wavelength, Dn the frequency at FWHM (Dn ¼ 6.54�1013 s�1) and
tf the fluorescence lifetime. The fluorescence lifetime was
measured to be 0.2ms at 300 K. Thus, the emission cross section
se was calculated to be 375�10�20 cm2 at 880 nm at 300 K.
4. Conclusion

The spectral characterization of Cr3+:Sc2(MoO4)3 crystal was
investigated. Cr3+:Sc2(MoO4)3 crystal exhibits a broad emission
band. The emission band is extended from 750 to 1200 nm with a
peak at 880 nm and an FWHM of 176 nm at 300 K. Of course,
another major interest is the broad absorption bands of
Cr3+:Sc2(MoO4)3 crystal, one of which is near l ¼ 710 nm due to
4A2-

4T2 transition, which has the potential for efficient pumping
using visible-range diode laser. In comparison with the other Cr3+-
doped materials (see Table 2), Cr3+:Sc2(MoO4)3 crystal has a broad
emission band, larger absorption and emission cross sections.
Cr3+:Sc2(MoO4)3 crystal has a very short fluorescence lifetime,
however, it can be used as a short pulse tunable laser gain
medium. Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a
potential tunable laser gain medium.
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Table 2
Spectral parameters of Cr3+:Sc3(MoO4)3 crystal and other Cr3+-doped materials.

Material 4A2-
4T1

4A2-
4T2

4T2-
4A2 Ref.

l (nm) sa (10�20cm2) l (nm) sa (10�20cm2) l (nm) FWHM se (10�20cm2) tf (ms)

BeAl2O4 420 10.0 600 20.0 750 – 0.5 260 [12]

K2NaScF6 430 1.4 630 0.7 760 – 1.3 285 [12]

GSGG 488 5.1 647.1 3.3 777 – 0.75 114 [18]

LiCaAlF6 425.5 – 625 780 2000 cm�1 1.23 175 [19]

LaSc3(BO3)4 17 [11]

EJx 457 1.18 654 1.68 948 200 nm 6.13

EJy 456 1.72 655 1.01 948 210 nm 5.83

EJz 458 1.32 655 0.81 948 280 nm 4.33

KAl(MoO4)2 33 [20]

s-Polarization 480 8.44 669 3.72 823 146 nm 2.74

p-Polarization 481 5.03 668 2.25 823 135 nm 2.93

Cr3+:Sc2(MoO4)3 499 37.4 710 32.1 880 176 nm (2179 cm�1) 375 0.2 This work
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