## Magnesium Fluoride (MgF<sub>2</sub>)

THOMAS M. COTTER, MICHAEL S. THOMAS, and WILLIAM J. TROPF Appled Physics Laboratory The Johns Hopkins University Laurel, Maryland

Magnetium fluoride is a setragonal manerial with TiO<sub>2</sub> (rutile) structure. The space group is  $D_{a}^{\pm}$  or P4/sums. The unit cell occitains two furmule units (six stoms). Districtions of the cell (at 27 °C) are 0.4623 nm along the st units and 0.3052 nm along the c unit [1, also are 2]. Theoretical density is 3.177 g/cm<sup>2</sup> and noticing point is 1528 ± 3 K [2]. A melting point of 1543 K is also reported [3].

Magnedum ions occupy octahedral sites with  $D_{2i}$  point symmetry. Six fittaring ions of sites with  $C_{2i}$  symmetry varianted cath magnesium ion. Flucture-ion positions in the unit cell are known from X-ray diffraction measurements [1, 2].

A wide transparency range from 0.12 to 6 µm [2], good machanical properties, and jow optical index of refraction rocks magnetian Subvide a desirable material for contings and interference filters. MgF<sub>2</sub> is a positive mistrial material, with its highest hipticingman in the UV. George for fithing flooride, MgF<sub>2</sub> has the vicenced wavelength could of any moment optical restorial.

Magnesium flooride occurs naturally us the mineral sellint: (3). Single-crystal MgF, [3, 4] is widely each for withlows, ideas, polarizers, and other optical components. Optical quatity, int-present polycrystalline MgF, is also each for optical components, particularly for the informed. IRTRAN 1 (5) is a rotale name for int-present MgF, useds by Koduk; KO-1 is an equivalent Soviet manual [6]. Others and bioDrink [7] compare properties of IRTRAN 1 and single-crystal magnesium fluoride.

MgF<sub>1</sub> has been used as a division for material for solid-stars laters. Venetion, which, and could have been each as dopents to produce transite colid-acate laters in the infrared [5, 9].

The UV and 10, transportery of magnetism fluoride lends lateff to energy applications.  $MgF_1$  has been used as a minimum material for UV detectors in 1999, applications [10, 11]. The birefringence is call to polarize light in the UV (12-14). One such polarizer, operating from the UV to the IR, has

been constructed [15]. The low index of MgF<sub>2</sub> in the IR (cd.<sup>40</sup>) is use as a Solell componentor in the IR [16]. Magnesium fluctide is also used as a ship firm in cost aluminum micross for animated reflectivity in the vacuum UV [17, 18]. Because of the relatively low index, magnesium fluctide is also used as a sufficient costing for leasts and in a low-index layer to dielectric interference filters.

Magnesium fluoride issue issued gap of approximately 11.8 eV. Optical constants from the UV through the XUV here been measured for singleavailat magnetium fuoride [19-22]. The lowest-energy electronic features of the management functions apportunit is an anchorn predy createred oper 11.8 eV [20, 21]. This is due to an anchon pash at 11.6 eV for the extraordinary component and M 12.2 eV for the ordinary component [23]. The factors peak plucetes the UV absorption edge is this region, newsoved 44 10.9 cV [20]. Although an absorption head beginning 44 1320 Å has been observed, the transmission does 057 drop significantly used. 1122 A (10.8 eV) [2], which is close to the measured absorption edge. The internated transitions fastin user 12.2 eV [21], et 12.4 eV for the correcivilitary and 12.8 eV for the ortificary cay [22]. The extraordinary-may absorption mays has structure at 18.5 eV and the ordinary my at 15 and 20.5 eV [22], Bundd shewyting structure user 20.8 eV is attributed to anertrand transitions [30]. These transitions are believed in arise from transitions from the upper nations hand of finances (20") in the conduction. tend of importance [3a+3p] [21]. A peak at 24.5 eV is attributed in a plasmon [20, 21]. The plasmon yeak is compared of an extraording year component # 24.3 eV and an ordinary-my component # 24.6 eV [22]. Structure can in the absorption coefficient from 22-40 eV is structured to interfaced traditions 2st level of the fluoring ion to the conduction hand [19, 21], 16 the 40–56 a V ratios, two absorption peaks rate: as absorption. peak # #1.5 eV caused by a double plasmon and a peak # \$4.6 eV attributed in an anchos [19]. Struggue from 56-62 eV is attributed to transitions of 2p<sup>4</sup> electrons of magnosium 10 the conduction issued [19].

Refrective-index data for the MgF, transporent region from the UV through the IR are given by more more [2, 12, 23-27]. Dodge [27] êtted index data (at 19°C) to a Solineier-type dispersion relationship of the form

$$a_{\nu}^{2} - 1 = \frac{2.5903553 \times 10^{14}}{(230, 499.30)^{2} - \nu^{3}} + \frac{4.4543208 \times 10^{4}}{(105, 692.13)^{2} - \nu^{3}} + \frac{4.0636297 \times 10^{3}}{(420.28101)^{2} - \nu^{3}}$$
(1a)

and

$$\pi_r^2 - 1 = \frac{3.0458773 \times 10^{14}}{(271.42^{10}.78)^2 - r^2} + \frac{6.1303994 \times 10^{1}}{(110, 178.73)^2 - r^2} + \frac{4.4070693 \times 10^{2}}{(420.66305)^2 - r^2}, \quad (15)$$

where v is the frequency in wave constant. Equation 1 represent electro-

sio resonances with the line two terms and all IP resonances with the third term. These terms full in the middle of the measured electronic transitions. and terms tibusticas, respectively. The overall accuracy of index calculated from Eq. 1 is quoted as betwee thus  $2 \times 10^{-3}$  over the 1400–  $50,000 \text{ cm}^{-3}$  range.

Change in the index of refraction with temperature, pressure, and terms is realistic. Thermo-optic time are given by many courses [2, 25-30] without good agreement; data from the National Ruman of Standards [28] are tendeduced comprohensive, sever a wide temperature range, and agree well with recent measurements of the temperature dependence of optical dispersion [30]. The classic properties of MgF, have been reported in the form of classic constants, photoeboxic recursts, and pleaselectric constants [31, 32].

Optical properties of this films of megnosism finaride term been wadied extensively. Much dispatiny mine between published data due to variations of the conditions and mached of properties published data due to variations [33-37]. In addition, thin-film properties wetally do not emich singleoryarel properties [29, 20]. Consequently, this article concentrates on properties of singly orystels.

Radiation densage of MgF<sub>2</sub> is described elsewhere [38]. Stables of radiation effects on the absorption of magnetium financials have revealed absorption bunch in the UV. These provident absorption peaks at 117, 260, and T20 am develop, which can be antibuted to the grantize of F externs by radiation [38]. No observations of D8 absorption due to the fluorescence of MgF<sub>2</sub> has also been indicated in [38]. The observations of the fluorescence of MgF<sub>2</sub> has also been indicated in [38].

Absorption at the UE edge of transparency in dominated by multiplemon absorption [40]. A model of unsitiplemon absorption [41] has been davatoped and nonlininit with experimental thus over a white temperature range. Market constants for the ordinary my of MgF, an given by Thomas and search [42].

The Suplarantel (Our-photon) letters effectively eccur in the 290-625 cm<sup>-1</sup> spectrel topics. Group theory predicts the following phonon stocks for MgF<sub>2</sub> [43-46]:

$$\Gamma = A_{1x} + A_{2x} + A_{2x} + B_{2y} + B_{2y} + 2B_{1x} + E_{y} + 3E_{y}, \qquad (2)$$

where the  $A_{2g}$  and  $B_{1g}$  modes are optically baselies, the  $A_{2g}$  (E[c) and  $E_{r}$  (E[c) modes are IR-active, and the remaining modes are Raman-active. Table 1 line the IR modes as determined by Barker [44]. Thomas and Joseph [42], and Giurdson and Banak [46]. Locardsons of the Raman species are given by Porto at al. [45] at 92 ( $B_{1g}$ ), 205 ( $E_{g}$ ), 410 ( $A_{1g}$ ), and 515 ( $B_{2g}$ ) cm<sup>-1</sup>.

Table I also fact hore the transverse and longinghtal optical frequen-

ches. The transverse optical frequencies are the mode locations; the inclusion longitudinal-mode frequency is an important parameter in the mattiphenon-absorption model [41], since it designates the maximum phonon frequency.

At frequencies below the lowest-frequency transverse optical mode, absorption decrements and the material beachaon transparent. The magnitude of description is thought to be a combination of contributions from both the tail of the fundamental lattice vibrations and various multipleous difference basids. The index of tefraction over the includes the effect of tasks vibrations. Estimates of low-frequency description mode from the real wing of the fundamental modes (Table I) for MgF, are about 60% of the ordinary-tay imaginary index of refraction and 95% of the extraordinary-ray values, descended by Bystrov et al. [47] in the 10-23 cm<sup>-1</sup> region. Monumentary of two different elettered tamples of polycrystalline MgF<sub>2</sub> by Stead and Simonia [48] showed jut higher shariptice.

The loss-frequency index of refraction of magnetion fluoride is given by Fostanella et al. [48] III 1002 Hz and by Bystov et al. [47] for the 300-200 CMT cauge. These data agree with each other and with the data in Takie I monst for the alightly higher extraordinary-may rules given by Fostanella et al. [49]. No temperature-dependent low-frequency index data worm forum, but pressure dependence is given by Link et al. [40].

Table II was constructed from measurements reported in the lifethure to well as model predictions [51]. Real-index data (a) from 10-83 eV and imaginary-index (k) data from 11-63 eV are taken from several tenerors [19-32]. The measurements by Hanten et al. [19], Williams at al. [20], and Stephan W al. [31] the new distinguish between endinary- and extraordinaryray computation. These data can be considered to be we "swarage" for the oryscal. Thermat gl al.'s [22] measurement of ordinary- and extraordinaryray continue on the 11-28 eV region see the included.

Ordinary-ray index data in the 0.115-0.200 are region are taken from Williams and Arabasan [23], supplemented by measurements of Summarz et el. [12]. Entraordinary-ray data for this region are obtained by combining ordinary-cay data with the summalous dispenden data of Chandrasekharao and Damany [24]. Bost crollarry- and extraordinary-ray data in the 1400-50,000 cm<sup>-1</sup> range are calculated from the Selisnelar dispension relationships (Eq. 1) of Dodge [27]. One value of extinary-tay observation participant is given by insintance. 4 pt. [12].

Single [51] and multipleonon [41] indice-vibration models are cated to estimate the complex index of refraction for worthoughts of 7.41 are and longer. Measurements of Bystrov et al. [47], and Federate at al. [49] are the base evaluate low-frequency index date.

The summary of index measurements in the electronic region is relatively poor; estimated actual are approximately 10%. Due from Barrow et al.

## Magnation Plucide (MgP,)

[19] and Williams et al. [20] agree well in the overlap region (20–27 eV). Dute from Stephan et al. [21] have consistently lower n and higher k assumed with other sources [19, 20]. Dute from Thomas et al. [22] have precision on the other of  $\pm 5\%$ .

The real-index data from 0.115–0.200 are have a quoted scenaroy of  $\pm 0.002$ ; the dispersion formula of Dodge [27] represents the data from 0.2–7.0 µm width  $\pm 0.00002$ . The accuracy of complex index data it leager wavelength is unknown, has uncertainty in the values is probably in the laws-eignificant digit reported in Table II (data is, a accurate to  $\pm 0.01$  and k to about 5%). Low-frequency real-index measurements of Fontucella at al. [47] some the accuracy of x to be  $\pm 0.005$  and  $\pm$  to within  $\pm 5\%$ .

Figures 1 and 2 show a composite of the complex index of infraction based on the data of Table 11. Figure 1 gives the ordinary-ray index and Fig. 2 status the extraordinary-ray properties. Complex infra-of-astraction, data for the electronic region (successingly below 0.05 µm) derived from appointized measureme<sup>500</sup> telth an anknown adx of ordinary- and extraordinary-ray index are included to Fig. 1.

Tables III and IV give temperature dependence for the real part of the index of extraction. Measurements of dn/dT by Coldman ero?. [29] typically lasts a standard deviation to a theory temperature-dependence in of  $0.1 \times 10^{-5}$  %.

## 

- M. W. O. Wychoff, "Crystal Structures," International Publishers, New York, 251 (1965).
- A. Omerkanna and B. W. H. Stevennon, "Some Programs at Integration Provide Dynamical State Red.," Proc. Phys. Sci. (London) 72, 1001 (1958).
- W. A. Ragantus, "Magnatum Frechis Updar and Sciences of Optical Properties," Low fear 19, 65 (1993).
- "Capital Optics." Capitag OF db., Rambers/Ritsel, Solas, Chics, 28 (1989).
- "Robit BULAN Method Optical Manuals." Publication U-N, Eastman Robit. (Impury, Richards, New York, (1971).
- I. V. Men', R. H. Volyceix, and Y. P. Swimeys, "The Suspensivy of EC-1 Optim. Counter," Inc. J. Qp. Task. B, 49 (1974).
- A. L. Qinto and W. B. McBahn, "Transmittance of Single-Crystel Magnetium Fluctuiteand IRTRAIN-1 in 694.0.2 or 15 µ Range," J. 1994. Soc. Am. 51, 1005 (1963).
- L. P. Jorisma and H. J. Guggenbeim, "Phonon-Throubatted Optical Mainter," Phys. Rev. 146, 179 (1967).
- P. F. Konkes, "Pulse-Patonsi Oceanics of Division Transition-Setted Lance," (EAS J. (January Electron Que 19, 11g) (1982).
- O. Giprery, M. Generale, H. Drowll, W. Feinler, and W. Mentenker, "Pairimiten of MyR, and CH Window Statistic Space Teleproper Longing Spectrograph," *Phys.* SP76 595, 136 (1980).
- W. Vistman, A. G. Cutusia, G. F. Sieper, end J. E. Bascheimer, "Physicalities: Window Metarials and r Flatman Intelligibut: Physicscore and Phapharamore," April. Opt. 24, 2009 (1973).

- D. L. Steinstein, W. G. Fhilipp, M. Which, and F. F. Posten, "Polasties for the Vacuum Ultraviolet," Appl. Dys. 6, 1001 (1960).
- Haw and W. R. Ronner, "Reflection Polymers for the Vacuum Dimericki Using Al+high-Minure 404 on MgR, Para," Appl. Opt. 17, 34 (1976).
- W. C. Johnson, Jr., "Magazening Flowing Pointing Points the Vacuum Discovicies," Res. 52, January, 39, 1375 (1994).
- D. C. March and A. S. Alexanoo, "Single Korben Points for Light Pointation Between 1400–70.000 Å," Appl. Opt. 9, 1949 (1969).
- R. D. Pack, "A high-field Components for the New Infrated," Appl. Opt. 7, 978 (1963).
- W. R. Ummin, J. R. Chamterkis, and G. Hans, "References of Advantum Connection with http://www.commission.com/action/action/action/action/action/ latification." Appl. Opt. M. 240 (1971).
- H. R. Press and D. J. McCammy, "Dysted Spicentine of Machinest Concentration Absorbary, Flat, in the OP (2001–2500 Å)," Appl. Opt. 10, E216 (1976).
- M. W. F. Finisten, E. T. Arstnaw, and M. W. Willinse, "Dynamic Reporting of Map. and Map., in the Rissense Observices Regim." J. Appl. 12(1), 4034 (1972).
- M. W. Millinsk, R. A. Michine, and P. T. Arabana, "Optical Polymetics of biogenetics: Rounds in the Yanama Uncodulet," & Appl. Phys. 49, 1246 (1997).
- O. Stealans, Y. Le Calver, J. C. Lemmonr, and R. Weble, "Projection Optimum of Spectra Biochemique du Maff, et du CaP, du 10 h 46-V," J. Phys. Circu. Solids 31, 401 (1969).
- J. Thomas, E. Brephen, J. C. Learnaulet, M. Miser, and S. Rottin. "Optical Animorphy: of MaR-in Inv UN Adverging Region." Phys. Rev. Dob. 5 16, 160 (2013).
- M. W. Williams and E. T. Associate, "Optical Properties of Criptallius MpP, Sour 115 to 400 mm." Appl. Opt. 40, 4437 (1974).
- V. Chemistrationes and H. Dathery, "Association Dispersion of Machingman of Supplicits and biographics Flouride in the Yanzam Ultravision," Appl. Dyn. 6, 671 (1966).
- W. L. Holle, "Properties of Cytical Alexandric," in "Handhick of Cytics" UV. D. Dubiel, ed.), McCourr-Hill, New York, 7–45 (1979).
- H. H. Li. "Referible lates of Alkeline Evids Reader and In Workingth and Temperature Destruition," J. Phys. Cime. Ref. Page 9, 141 (1989).
- M. J. Dodge, "Referring Properties of Magnetium Theoride," Appl. Opt. 23, 1989 (1999).
- A. Pelinen, D. Brennin, R. M. Wieler, and M. J. Dolge, "Option Metable Characterization Host Technical Report. Pelinency 1, 1978-Supercond 24, 1978." National Exercise al Revisionis Technical New V93, 49 (Pelining 1989).
- C. P. D. Linchetger, A. Y. Roy, I. W. Salter, and J. A. Sheo, "Thermol and Sub-Surface Constraints, of Magnetium Flooride and Rive Subplicits for Optical Costing, Application," *Opt. Acad.* 5, 500 (1988).
- D. P. Beimger, A. H. King, and V. Amarakan, "Temperature Dependence of the Optimal Distribution of Mary, Mary, and Eory," Phys. Rev. B 25, 2636 (1984).
- G. Diratz. "Presenting in Properties of Sugregian Provides." in "Basic Optical Properties of Materials. Successive of Papers." Womani Ensens of Excision System Publication. 526, 273 (2017) 1999).
- I. I. Abstativer, L. E. Andrianismi, I. Y. Mannariav, and Y. M. Baineov "Protokinds" Physician and Revision Streams in Diagontical, Flooride Crownia," *Res. Phys. Addi Soc.* 17, 2006 (1975).
- D. Sotth and P. Burneskar, "Partnetist Labor of Setue Code and Flooride Coding Manachia," Appl. Opt. 16, 111 (1973).
- O. E. Word B. M. G. Cridghand, J. E. Savanoy, and Y. J. Makanoy, "Vacanot Ultraviolet Lass in Nagotsian Florida Blans," Appl. Opt. 16, 3644 (1984).

- 35. P. J. Marsin, W. G. Sabary, R. P. Neperlicki, G. R. McKenzie, G. J. G. Coskayne, S. F. Set, O. R. Wood, and G. O. Courpored, "Influence of for Aminence on the Carlosi Productions of MarPa," Aug. Opt. 20, 5255 (1967).
- A.E. Barrière die A. Laurer, "Optical Transverse to Diza-Versa This Fizza of the Look. Compausis May, and AP, as a Peactor of Tear Constitute of Perpenditor," Agel. Oct. 26, 2655 (1977).
- 35. J. M. Shyndres, R. Machenn, 100 L. E. Regulado, "Determinentes of the Optical Channell of MyF2 and Ze6 from Sectorobecomente Measurements the Dr. Classical Omilians MedicaL" April Oct. 77, 2549 (1996).
- 38. M. J. Weber, 49., "Cliff Haddhook of Laget Segure and Technology, Volume 3: Clarical Menichitz, Part 1: NonBritz/ Clerical Patriandes/Roductus Depares," CBC Print, Sour-Report, Phys. 304 (1996).
- 39. W. Vielande, A. G. Bubrits, G. P. Pieser, and J. B. Badekston, "Phytometric for Sundon Manuals which Electron Instantions' Flancescence and Pherphorescence," April Oct. 10, 2194 (1975).
- T. F. Gerneth, "Alteorptics Conditions of Infranto Laser Vehence Materials," J. Phys. Cherr. Solids 34, 3094 (1973).
- 41. M. E. Thrans, R. J. Joseph, the W. J. Tropt. "Inhrund Transmission Propandos of Bapping, Sping, Yario, and ALON in a Possilon of Prequency the Temperature," April: Opt. 27, 239 (1980).
- M. E. Thomas the R. I. Learnin, "A Companionana Many i Scille Initials: Thomassican Properties of Optical Workson," Proc. SP/C 909, 27 (1998).
- 43. G. R. Plant and C. M. Peary, "Paralalization References and Transmissants of Provinings Magazahan Photide and Magazahan Flowrids," Phys. Rep. Lts. A688 (1964).
- 44. A. S. Barkar, "Transcence 404 Longitudinal Casic Mode Study in May", 469 7248." Phys. Rev. 135, A1290 (1954).
- S. P. S. Parso, P. A. Meury, and T. C. Dannas, "Ranna Severa of TiO<sub>2</sub>, Mar<sub>2</sub>, ZaF<sub>2</sub>. Fris, the Hafp," Stars. Res. 199, 522 (1987).
  40. J. Civerson and C. Gannis. "Informal Sciences of Iron, Zizz, and Magnesium Westvices: L.
- Analysis of Russia," J. Phys. C: Solid Star Theor. 28, 2747 (1999).
- 47. V. P. Byanes, Y. G. Charmans, G. V. Kadan, and A. F. Koprivatento, "Distances Properties of Classed Crystels at Substituenet: Wareleague," San. Phys. Tech. Phys. TI, 1296 (1996).
- 42. M. Benn and G. Santaja. "New billingue Ways Conservationation of Data Moto Montridg, April Opt. 25, 1974 (1987).
- 27. J. Foniscele, C. Antero, the D. Bernée, "Low-Preparaty Distance Domains of a-Quana, Sanghire, MgP, and MgO," J. Appl. Phys. 48, 2662 (1974).
- 50- J. Link, M. C. Mintergill, J. J. Pretrantie, V. B. Bore, and C. G. Andere, "Pressore Variation of the Low Fondpaner Distance Domains of Sound Anisemping Commun." J. Anni, Page 41, 96 (1981).
- M. E. Phornes. "A Configurar Costs for Medicing Optical Productions of Relation." Monthelia," Proc. 5742 1111 250 (1997).



Fig. 1. Log-log plot of  $n_o$  (solid line) and  $k_o$  (dashed line) versus wavelength in micrometers for the ordinary ray of magnesium fluoride. Data below 0.05 µm (electronic region) are combined ordinary- and extraordinary-ray results.



Fig. 2. Log-log plot of  $n_e$  (solid line) and  $k_e$  (dashed line) versus wavelength in micrometers for the extraordinary ray of magnesium fluoride.

| F                             | undamental Ir                                             | frared Latti                                                                        | ce Vibration Par                 | ameters for Mg                                              | $\mathbf{F}_{2}^{a}$         |
|-------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|------------------------------|
| Mode                          | Transverse<br>optical<br>frequency<br>(cm <sup>-1</sup> ) | Strength                                                                            | Normalized<br>width              | Longitudinal<br>optical<br>frequency<br>(cm <sup>-1</sup> ) | Refs.                        |
|                               |                                                           | E⊥c ax                                                                              | is (ordinary ray                 | <i>y</i> )                                                  |                              |
| 1<br>2<br>3                   | 247<br>410<br>450                                         | 2.22<br>0.19<br>1.14                                                                | 0.014<br>0.033<br>0.058          | 303<br>415<br>617                                           | [44]<br>[44]<br>[44]         |
| 1<br>2<br>3<br>4 <sup>b</sup> | 248<br>408.5<br>447<br>535<br>Total<br>251                | $\begin{array}{r} 1 = 3.55 \\ 2.23 \\ 0.22 \\ 1.10 \\ 0.05 \\ 1 = 3.60 \end{array}$ | 0.0115<br>0.0165<br>0.025<br>0.3 | 302<br>414<br>621<br>304                                    | [51]<br>[51]<br>[51]<br>[51] |
| 2<br>3                        | 413<br>452                                                |                                                                                     |                                  | 422<br>610                                                  | [46]<br>[46]                 |
|                               | Total                                                     | = 3.38                                                                              |                                  |                                                             |                              |
|                               |                                                           | E II c axis                                                                         | (extraordinary                   | ray)                                                        |                              |
| 1<br>2 <sup>c</sup>           | 399<br>556                                                | 2.7<br>0.01                                                                         | 0.048                            | 625                                                         | [44]                         |
| 1                             | Total<br>404                                              | = 2.71                                                                              |                                  | 676                                                         | [46]                         |
| 1                             | -0 <del>-</del>                                           | 2.07                                                                                |                                  | 020                                                         | [40]                         |

TABLE I

<sup>*a*</sup>The frequency  $(\nu_j)$  is the location of the mode (transverse optical frequency). The strength  $(\Delta \epsilon_j)$  is the contribution of the mode to the dielectric constant. The normalized width  $(\gamma_j)$  is the mode width divided by the mode frequency. The complex dielectric constant  $(\epsilon)$  is then modeled as a function of frequency  $(\nu)$  by:

$$\epsilon(\nu) = \epsilon_{\infty} + \sum_{j} \frac{\Delta \epsilon_{j} v_{j}^{2}}{v_{j}^{2} - v^{2} + i\gamma_{j}v_{j}\nu} ,$$

where the  $\epsilon_{\infty}$  term (= 1.886 for E  $\perp$  c and 1.918 for E  $\parallel$  c axis) represents the electronic contributions to the dielectric constant (plus one). <sup>b</sup>Mode 4 (E  $\perp$  c) is probably caused by an impurity. <sup>c</sup>Barker [44] identifies this as a weak forbidden mode.

| ¥                 |                       |          |                    |                |            | <u>.                                    </u> |
|-------------------|-----------------------|----------|--------------------|----------------|------------|----------------------------------------------|
| _ <u>5</u> ¥      |                       |          | <u> </u>           | £              |            | . ±                                          |
| \$1.0             | 669608                | 0.01.00  | <b>6.1</b> 06 [15] | 0.046 [19]     |            |                                              |
| 74.5              | 633511                | 0.01,72  | 6,912              | 0.070          |            |                                              |
| 76.3              | 620156                | LDIS!    | 6.905              | 0.044          |            |                                              |
| 75.5              | <b>K</b> . <b>1 H</b> | 0.0664   | 0.906              | 0.001          |            |                                              |
| <b>1</b>          | 52602                 | 1010     | 1.902              | 0.043          |            |                                              |
| 77.5              | 90974                 | 0.0173   | 0.91¢              | 0.095          |            |                                              |
| <b>H</b> 1        | 512191                | 0.016    | 1.902              | 0.019          |            |                                              |
| 65.0              | 50222                 | 0.000    | 0.945              | 0-079          |            |                                              |
| <b>43.0</b>       | 5242.85               | LDISt    | 6,917              | 0.076          |            |                                              |
| 6U.0              | 회회의                   | U.D.(ex. | 0.019              | 0.079          |            |                                              |
| 4500              | 104121                | 0.0197   | 0.921              | 0.013          |            |                                              |
| <b>D</b> .0       | 00000                 | 0.000    | 0.003              | 0.030          |            |                                              |
| FL 0              | 441924                | 0.0003   | 0.924              | 0.095          |            |                                              |
| 66.0              | <b>1913</b>           | 0.0007   | 0.926              | 0.000          |            |                                              |
| 200               | 4-49-61               | 0.0290   | 0.925              | 0.050          |            |                                              |
| <b>33.0</b>       | 60 Y                  | 0.0024   | 0.326              | 0.000          |            |                                              |
| 17_O              | 450732                | 1000     | 6.905              | 0.092          |            |                                              |
| 56 D              | 61667                 | 0.022    | 9.13               |                |            |                                              |
| 35.0              | 41260                 | 1.022    | 0.935              | 0.145          |            |                                              |
| SU0               | 2.5.6                 | 0.0050   | 6.NO               | 0.105          |            |                                              |
| 37.0              | 40.40                 | 0.0234   | 0.935              | 0.098          |            |                                              |
| 5.0               | 1.000                 | 0.0224   | 2.950              | 0.000          |            |                                              |
| 51.0              | 171120                | 0.000    | 6.903              | 0.1 <b>0</b> 0 |            |                                              |
| 100               | 400.04                | 10.0     | 0.595              | 0.105          |            |                                              |
| 19.0              | A. 19                 | 0.0255   | 0.972              | 0,3477         |            |                                              |
| 48.0              | 10101                 | 0.03     | 0.300              | <b>G</b> 111   |            |                                              |
| 17.5              | 18(1)10               | 0.0255   | 0.920              | 0.133          | 0.607 [21] | 0.022 [21]                                   |
| 47.0              | 1000                  | 0.025    |                    | 0113           |            | 1.096                                        |
| 46.5              | 3030H                 | 0.0057   | 0.919              | 0.118          | 0.955      | 2.099                                        |
| 64.0              | 471002                | 0.0279   | 0.013              | 0.129          | 0.934      | <b>1</b> .03                                 |
| 5.5               |                       | 0.0212   | 0.306              | 0.172          | 0.957      | 0.102                                        |
| <b>6</b> <i>N</i> |                       | 0.027    |                    | 0.00           | 0.949      |                                              |
| <b>4</b> .5       | 100014                | 0.0279   | 0.518              |                | 0.99       | 0.114                                        |
| <b>.</b>          | 35466                 | 0,000    |                    | 0.230          | 11.54.7    | 6.115                                        |
| - C.              | 8.066                 | 0.045    | 0.518              | 8.134          | 0.46       | CIB                                          |
| 0.0               | 240610                | 0,000    | 0.910              | 0.111          | 0.73       | 6.199                                        |
| - C. 1            | 9710                  | 0.052    | 0.308              | 0.463          | 0.44       | 6.43                                         |
| 12.0              | 19 750                | 0.0000   | 0.918              | 0.545          | 0.921      | 0.129                                        |
|                   | 35017                 | 0.000    | 0.946              | 4.199          |            |                                              |
| 41.0              | ÷0.                   |          | 0.919              | 11194          | 0.947      | 6.131                                        |
| -                 | 30000                 | 0.0006   | 0.96               | Q. 33,         |            | 0.159                                        |
| -000              | 3270HP                | a ta na  | 0.919              | 6.465          | 0.9479     |                                              |
| 39.5              | 30.545                | Am H     | 0.945              | 0.104          | 0          | 1134                                         |
| 300               | 314554                | a pálla  | 0.925              | 11124          | 0.894      | C.139                                        |

TABLET

Votice et a und & Charland Swith Tarjage Rainement for Magnation Neurith'

(approximate)

| Haganian Castle |         |         |                       |                |        |       |  |  |
|-----------------|---------|---------|-----------------------|----------------|--------|-------|--|--|
| e٧              | am - 1  |         |                       | _ Ł .          | R      | ŧ.    |  |  |
| 38.5            | 310521  | 0.0372  | 0.922                 | 0.173          | 0.55   | 0.170 |  |  |
| 36.0            | 306484  | 0.0526  | 0.927                 | 0,173          | 0,992  | 0.158 |  |  |
| 37.5            | 303456  | 0.031   | 0.923                 | 0.174          | 0.901  | 0.159 |  |  |
| 37.0            | 290423  | 0.0637  | 0.92%                 | 0.175          | 0.000  | 0,12  |  |  |
| 38.2            | 290390  |         | 0.922                 | 0.175          | 0.23   | 11100 |  |  |
| 30.0            | 100337  | 0.0144  |                       | A 175          | 1 200  | 0.109 |  |  |
| 32.3            |         | 0.090   | 4 943                 | 0.173          | 1 000  | 0.130 |  |  |
| 14 4            | 1280624 | 0.000   | 8 61 9                | 0.199          | 1.255  | J 100 |  |  |
| 14.0            | 11.000  | 0.055   | 6 WIL                 | 6 175          | 1 960  | 0 150 |  |  |
| 39.9            | 7104    | 0.0974  | 1.299                 | 0.162          | 0.290  | 0.186 |  |  |
| 33.0            | 2614    | 0.0376  | 0.964                 | 0. T <b>TO</b> | 0.00   | 0.205 |  |  |
| 32.5            | 2012    | 0.0311  | 0.001                 | 0.70           | 0.007  | 0.224 |  |  |
| 33.0            | 2005    | 0.0367  | 0.297                 | 0.200          | 0.290  | 0.221 |  |  |
| 31.5            | 204005  | 0.0394  | 0.504                 | 0,219          | 0.00   | 0-199 |  |  |
| 31.0            | 2000    | 0.0400  | 5,510                 | 0,225          | 0.298  | 0.299 |  |  |
| 30.5            | 26727   | 0.0407  | 0.510                 | 0,232          | 1237   | 0.223 |  |  |
| 30.0            | 241054  | 0.0413  | 0.907                 | 0.228          | 0.265  | 0.223 |  |  |
| 78.5            | 2727    | 0.000   | 0.999                 | 0,224          | 0.408  | 0.273 |  |  |
| 29.0            | 2.00    | 0.04.24 |                       | 0.221          | 0.111  | 0.164 |  |  |
| 78.5            | 2200    | 0.042   | 1000                  | 0.24           | 0.00   | 6.154 |  |  |
| 19.0            | 221001  | 1.041   | 4422                  | 0.20           | 0.000  | 0.240 |  |  |
| 710             | 7174    | 0.0450  | 1949                  | A 173          | 1 900  | 1 207 |  |  |
| 24.5            | 211122  | 0.045   | n n n n               | A 101          | 0.022  | 1.200 |  |  |
| × 0             | 10000   | 0.0477  | 0.004                 | 0.000          | 1 994  | 6 36T |  |  |
| 11.5            | 1080    | 0.0495  | 0.767                 | 0,300          | 0.777  | d 201 |  |  |
| 25.6            | 701637  | 0.0404  | 0.779                 | 0.301          | 0.371  | 0.224 |  |  |
| 24.5            | 197604  | 0.0105  | 0.767                 | 0.443          | 0.753  | 0.361 |  |  |
| 210             | 10.772  | 0.0517  | 0.762                 | 0.324          | 0.735  | 5.410 |  |  |
| 23.5            | 0.000   | 0.0579  | 0.436                 | 0.610          | 0.741  | 0.443 |  |  |
| 25.0            | D1.00   | 0.0139  | 0.436                 | 0.54           | 0.255  | 0.475 |  |  |
| 22 5            | 161473  | 0.255   | 0.999                 | 0.77           | 0,820  | 0.546 |  |  |
| 22.0            | (7744)  | 0,0564  | 0.946                 | 0.771          | 0.949  | 0.564 |  |  |
| 21.5            |         | 0.007   | . <b>P</b> <u>1</u> 2 | 0.632          | 1.25   | O.KM  |  |  |
| 20.0            | 164343  | 0.0004  |                       | 1.55           |        |       |  |  |
| 700             |         | 0.0400  | 1.144                 | 0.757          | 0.3925 | 0.042 |  |  |
| 19.4            | 100.000 | 0.0400  |                       | 11101          | 1944   | 0.040 |  |  |
| 14.6            | 1 90060 | 6.661   |                       |                | 1,000  | 0.545 |  |  |
| 10.4            | 195420  | 0.0479  |                       |                | 0 104  | 0 444 |  |  |
| 19.7            | 15460   | 0.063   |                       |                |        | 0.603 |  |  |
| 15.0            | 151244  | 6.665   |                       |                | 012    | 0.615 |  |  |
| 18.6            | 1.0511  | 6.669   |                       |                | 1.021  | 0.448 |  |  |
|                 |         |         |                       |                |        |       |  |  |

TABLE I (Continued)

(companie)

| 74 NF 34 B . | N Sametra and L |
|--------------|-----------------|
|              | <u> </u>        |

Namedan Pitchin

| ę٧    | éw,           | <u>معر</u> |            | 4               | R     | k     |
|-------|---------------|------------|------------|-----------------|-------|-------|
| 184   | 150010        | 0.0057     |            |                 | 1.054 | 2,626 |
| 18.4  | 4949          | 0,0574     |            |                 | 1.044 | 0.626 |
| 16.2  | 145792        | 0.0034     |            |                 | t.073 | 0.661 |
| 18.0  | 145179        | 0.067      | 1.327 (20) | 0.677 (20)      | 1.013 | 9.661 |
| 17.8  | 14,2566       | 0.0057     | 1.337      | 0.650           | 1,053 | 0.634 |
| 17.6  | 141352        | 0.0204     | 1.342      | 0.677           | 1.190 | 0.661 |
| 17.4  | 140572        | 0.0713     | 1.00       | 0.650           | 1.14  | 0,020 |
| 17.2  | 135726        | 0,0724     | 1.30       | 0.665           | 1.050 | 9.665 |
| 17.D  | 137113        | 0.033      | 1.64       | 0.65            | 1.050 | 0.000 |
| 10.6  | <u>]3-500</u> | 0.0738     | 1.34       | 0.605           | 1.100 | 0.674 |
| 16.0  | 121 31        | 0.0757     | 1.346      | 0.631           | DLI O | 0.676 |
| 184   | 131274        | 0.0756     | 1.44       | 0.605           | 110   | 0.00  |
| 16.2  | 191561        | 0.0745     | 1.747      | 0.573           | .145  | 0.464 |
| 10.0  | 139055        | 0.0775     | 1.44       | 0.342           | .1.   | 0.635 |
| 15,9  | 12001         | 0.0000     | 1.48       | 0.335           | .1.5  | 0.050 |
| 15.0  | 127-05        | 0.0755     | 1.437      | 0.533           | 1.193 | 0.625 |
| 15,7  | 12.5.1        | 0.0000     | 1.443      | 0.336           | 1.189 | 0.625 |
| 1.6   | 1043          | 0.0755     | 1.474      | 0.538           | 1,01  | 0,626 |
| 11.1  | 135013        | 0.0500     | 1.451      | 0.739           | 1.150 | 0.417 |
| 15.4  | 1202          | 0.000      | 1.490      | 0.531           | 1,196 | 0.67  |
| 151   | 124.00        | 0.0840     | 1.81       | 0.533           | .200  | 0.451 |
| 15.2  | 122533        | 0.0516     | 1.390      | 0,300           | 1.228 | 0.635 |
| 15.   | DUNS          | 0.0071     | 1.345      | 0.366           |       | 0.638 |
| 12,0  | 12020         | 0.0127     | 1.408      | 0.751           | 256   | 0.650 |
| 14.5  | 100176        | 0.0032     | 1,510      | 0,530           | .253  | 0.623 |
| 14.5  | 11009         |            |            | 0.510           |       | 0.414 |
| 11.7  | 1.5           | A0043      | 1313       |                 |       | 0.000 |
| 14.6  | 13736         |            | .30        |                 | 1.28  | 0.664 |
| 14.3  |               |            | 1.494      |                 |       |       |
| HC.4  | 20143         | 0.0000     | 1.985      | 8.504           |       | 0.200 |
| 14.3  | 12330         | A107       | 1.491      | 0.314           |       | 0.553 |
|       | 100300        | 0.000      | 1.472      | ● 417           | 1 220 | 6.497 |
|       | (12017        |            | 496        | 0.017           | 1 244 | A-101 |
| 114   |               | 0.0007     | 1.00       | A. 404          | 1 914 | 0.605 |
| 13.9  |               | A / 88     | 1.746      | 404             | 1 201 | D-MAR |
| 11.4  | 11,594        |            | 1.541      | 0.4883<br>A 677 | 1 140 |       |
| 3.7   |               |            | 1-304      | 0.592           | 1.417 |       |
| 34    | 100404        | 0.0014     | 1 144      | 0.632           | 1 203 |       |
| 12.5  | 10000         | 0.0000     | 1.000      | 0.444           | 1 715 | 0.65  |
| 13.79 | TOTAL C       | 0.0073     | 1.385      | 0.478           | 1 225 | 0.904 |
| 12.2  | 1007.010      | 0.0000     | 1 100      | 0.462           | 1 915 | 0.955 |
| 11.1  | 106069        | 0.0046     | 1 705      | 0.44            |       | 0 471 |
| 15.0  | 104041        | 0.000      | 1 111      | 0.00            | 1 199 | 444   |
| 1.41  | 100001        |            | i          |                 | 1.174 |       |

(continue)

| Mignistine Electricie |                   |          |            |          |                                       |            |  |
|-----------------------|-------------------|----------|------------|----------|---------------------------------------|------------|--|
| ۹V                    | en1               |          | 4          | *        | A                                     | ¥.         |  |
| 12.9                  | 101010            | n ó till | 1.586      | 0.395    | 1.192                                 | 0.363      |  |
| 2.8                   | 11.05             | 0.096    | 1.519      | 0.357    | 1.240                                 | 0.330      |  |
| 12.7                  | 100432            | 1.0076   | 1.514      | 0.332    | 1.297                                 | 0.328      |  |
| 12.6                  | 01-21             | 0.096    | 1301       | 0.328    | 272                                   | 0.54       |  |
| 2.5                   |                   | 0.0992   | 1.402      | 0.364    | 1.2.5                                 | 0.395      |  |
| 124                   | 0007              | 0.1000   | 330        | 0.40     | 1.237                                 | 0.000      |  |
| 14.5                  | 200               | 0.1014   | 1.209      | 6.601    | 1 104                                 | 0.010      |  |
| 12.1                  | 12007             | 0.1004   | 1300       | 0.507    | 1.173                                 | 0.798      |  |
| 20                    | 65164             | 0 1001   | 26         | 0 2 3 3  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.750      |  |
| 11.9                  | 04076             | 0.1042   | 403        | 0 441    | 1 734                                 | 0 228      |  |
| 11.6                  | 5173              | 0.1051   | 1.79       | 1.213    | 1.343                                 | 0.4%       |  |
| 1.7                   | 91365             | 0.1000   | 1.272      | 1.021    | 1.417                                 | 6.331      |  |
| 11,0                  | 94309             | 0.1069   | 2.201      | 0.007    | 1.373                                 | 0.021      |  |
| 11.5                  | 70.0              | 0.1079   | 7.25       | 0.66     | 1.647                                 | 0.326      |  |
| 11.6                  | 91946             | 0.1082   | 2.28       | 0.424    | t,615                                 | 0.793      |  |
| 11.3                  | 91 L 80           | 0.1002   | 2,239      | 0.332    | 1.049                                 | 0.440      |  |
| 11.2                  | 501.0             | 0.100    | 2123       | 0.225    | 1,627                                 | 0.475      |  |
| 11-1                  | 950Z              | 0.1117   | 2,20       | 9.110    | 1.50                                  | 0.341      |  |
| 11.0                  | 9.11              | 0.1123   | 1.956      | 0.045    | 1.519                                 | 0.60       |  |
| AL                    | 019/4             | 0.11.00  | 1.509      |          | 1.00                                  | 0.000      |  |
| NT 7                  | 0,004             | 0.1105   |            |          | 1.40                                  |            |  |
| 10.4                  | Richard           | 0.1170   | 771        |          | 1.53                                  |            |  |
| 60.5                  | RI-SEE            | 0.1121   | 1.724      |          | 1.49                                  |            |  |
| 10.4                  | 8381              | 0.4192   |            |          | 1.456                                 |            |  |
| 1.1                   | 83074             | 0.1204   | 1.660      |          | 1.413                                 |            |  |
| HU.2                  | 2.62              | 0.1246   | 1.650      |          | 1.469                                 |            |  |
| ML1                   | 81,96t            | 0.1725   | 1.443      |          | 1.460                                 |            |  |
| 19.0                  | PL685             | 0.1342   | 1.60L      |          | 1.443                                 |            |  |
| CY.                   | 400 <sup>-1</sup> | m,       | <i>5</i> , | 4,       | л,                                    | 4          |  |
| 27,0                  | 21736             | 0.6479   | 6.41 [24   | 42H (22) | 0.611 (22)                            | 0.304 (224 |  |
| 25.5                  | 243735            | 0.000    | 0.775      | 0.200    | 6.416                                 | 0.271      |  |
| 26.0                  | 201143            | 0.0437   | 0.724      | 0.201    | 0.203                                 | 0.241      |  |
| 25.5                  | 2000.0            | 0,000    | 0.770      | 0.322    | 0.730                                 | 0.281      |  |
| 20                    | 107000            |          | 0.385      | 0.490    | 0.794                                 | 0.00       |  |
| 14                    |                   |          | 0.102      | 0.399    | 0.799                                 | 0.137      |  |
| 15 .                  | 150520            | 0.0410   | 0.207      | 0.411    | 0.000                                 | 0.305      |  |
| 25.0                  | 196 504           | 0.0420   | 4 79D      | 619      | 0.677                                 | 0.40       |  |
| 19.5                  | 101472            | A 490    | 0.304      | 0.459    | 0.227                                 |            |  |
| 25.0                  | 173461            | 0.0464   | 0.041      | 0.453    | 0.00                                  | 0.405      |  |
|                       |                   |          |            |          | 1-9-1                                 | 100 M      |  |

TABLE II (Continued)

(comtinued)

| Siegenies Restlik |                |                                       |                  |                         |            |       |  |  |
|-------------------|----------------|---------------------------------------|------------------|-------------------------|------------|-------|--|--|
| л¥                | - <sup>1</sup> | -                                     | ٨.               | <b>*.</b>               | E,         | A.,   |  |  |
| 21.5              | 177409         | 0.0577                                | 0.395            | 0.585                   | 2.966      | 0.586 |  |  |
| 21.0              | 169975         | 0.0290                                | 0.350            | 0.500                   | 0.521      | 0.614 |  |  |
| 20.5              | 1.11.5         | 0.025                                 | 1.405            | 0.501                   | 0.894      | 0.612 |  |  |
| 20.0              | 161310         | 0.020                                 | 1.010            | 1.50                    | 0.905      | 0.001 |  |  |
| 93                | 157275         | 0.0544                                | 1.605            | 0.541                   | 0.919      | 0.607 |  |  |
| 10.0              | 1111           | 0.055                                 | 1.400            | 0.500                   | 0.965      | 0.525 |  |  |
| H.S               | 177211         | 0.0570                                | 1.404            | 0.172                   | 1.117      | 0.632 |  |  |
| 1810              | 145179         | 0.02.5                                | 1290             | 101.0                   | 1.151      | 0.632 |  |  |
|                   | 1/11.40        |                                       | 1.150            | 0.571                   | 1.364      | 0.525 |  |  |
| 17.0              | 197113         | 0.0020                                | 1.109            | 9,632                   | 1.317      | 0.575 |  |  |
| H.C.              | 133060         | 0.0911                                | 1.100            | 0.325                   | 1723       | 0.561 |  |  |
| K-40              | 12000          | 0.00775                               | LING             | A.00                    | 1.410      | 0.300 |  |  |
| <u> </u>          | 120015         |                                       |                  | 1951                    | 1313       | 0.496 |  |  |
|                   |                | 0.000                                 | 1.55             | 0.350                   | 1.367      |       |  |  |
| M.5               | 1109-75        | D D D D D D D D D D D D D D D D D D D |                  | 0.505                   | 1.009      | 0.330 |  |  |
| 13.5              | 102017         |                                       | 1.397            | 0.575                   | 1.1.1      | 0.540 |  |  |
|                   |                |                                       |                  | 0.622                   | 1.390      | 0.000 |  |  |
| 5.0               |                |                                       | 1.940            | 0.001                   | 1.449      |       |  |  |
| 176               | NUMBER         |                                       | 1,197            | 0.405                   |            | 0.466 |  |  |
| 114               | 10042          | 6.000                                 | 1.373            | 0.543                   | 1.479      | 0 214 |  |  |
| 12.5              |                | R. 1060                               | 1.351            | 0.001                   | 1.346      | R.151 |  |  |
| 11.0              | 5.76           | <b>6.00</b>                           | 1.550            | 1.714                   | 1.223      |       |  |  |
| 11.3              | 93171          |                                       | 1.913            | 0.630                   | 1.343      | 0.713 |  |  |
| 11.6              | <b>71.10</b>   | R. 1055                               | 1.948            | 0.516                   | 1.696      | 1.777 |  |  |
| 14                | 91940          | 0.1000                                | 1.11             | 0.380                   | 1.511      | 0.415 |  |  |
| 11.4              | 0533           | D. 1107                               | 1.301            | 0.247                   | 1.556      | 5.401 |  |  |
| 11.0              | 6770           | 1117                                  | 1.930            | 0.00                    | 1991       | 0.054 |  |  |
| 10.9              | 79)4           | L 1177                                |                  |                         | 1.892      |       |  |  |
| 19.9              | 17 M I         | 1.114                                 |                  |                         | 1.276      |       |  |  |
| 12.30             |                | Q.   LS                               | 1.714 [13]       |                         | 1.00%      |       |  |  |
| 10.7              | 10.9           | L   199                               |                  |                         | 1.45° (224 |       |  |  |
| 11.131            | 64730          | 0.120                                 | 1.475            |                         | 1.629*     |       |  |  |
| 10,230            | <b>12.00</b>   | 0.1212                                |                  | 13-10 <sup>-</sup> -(14 |            |       |  |  |
| 3.513             | 6 <b>0</b> 0   | 0.12                                  | 1.101            |                         | 1.97       |       |  |  |
| 1.167             | 7524           | 0,110                                 | 1.355            |                         | 1.987      |       |  |  |
| 1.35              | 71439          | 0.140                                 | 1313             |                         | 1.537      |       |  |  |
| 265               | 66667          | 0.150                                 | 1.191            |                         | .49        |       |  |  |
| 1.141             | 200            | 9.140                                 | 1.466            |                         | 1.474*     |       |  |  |
| 7.393             |                | 170                                   | 1.451            | -                       | 1,48       |       |  |  |
| 6.566             |                | 0,1100                                | 44419 [12        | 1                       |            |       |  |  |
|                   | 1000           | 0.140                                 | 1.346 [22        | <u>1</u>                | 1 419-07   |       |  |  |
| 0.000             |                | 1,000                                 | 1.45941 [22      | 1                       | T 4131     |       |  |  |
| 6.9 M             | 52.0           | 0.199                                 | 1.499 <u>p</u> 2 | 1                       |            |       |  |  |

TABLE & Conditional)

(mathem)

| Magatelan Flooride |                   |         |                |   |              |            |  |
|--------------------|-------------------|---------|----------------|---|--------------|------------|--|
| с¥                 | 68 <sup>- 1</sup> | l       | л <sub>е</sub> | * | ٨,           | ٠ <u>ـ</u> |  |
| 6109               | 74050             | 0.309   | 1.02.03 [77]   |   | 1.43637 [27] |            |  |
| 3,924              | 47612             | 0.212   | 1.46754        |   | 1.4360       |            |  |
| 5.686              | 1545              | 0.279   | 1 1001         |   | 1.42628      |            |  |
| 5,71               | 4,4,4             | 0.200   | 1.40900        |   | 12220        |            |  |
| 3,000              |                   |         | 1.40,007       |   | 1.41879      |            |  |
| 4.309              |                   | 1 2 1 2 | 1.40030        |   | 415/0        |            |  |
| 1 907              | 10017             | 2 770   | 1 39812        |   | 41677        |            |  |
| 6.429              | 15714             | 0.2.0   | 1.39570        |   | 1.40877      |            |  |
| . 713              | 5445              | 0.290   | 1.5000         |   | 1,40700      |            |  |
| 4.133              | 16161             | 3,399   | 1.0775         |   | 1.40344      |            |  |
| 4.075              | 222               | 61310   | 1.99162        |   | 1.42422      |            |  |
| 3,67               | 31290             | 0.370   | 1.79040        |   | 1.40275      |            |  |
| 3,137              | 30040             | 8330    | 1.30030        |   | 1.40160      |            |  |
| 3.041              | 19412             | 0.349   |                |   | 1.40296      |            |  |
| 1.244              | 11000             | 2.430   | 1.76/36        |   | 3956         |            |  |
| 3.000              |                   | 0.000   |                |   | 1.0613       |            |  |
| 1 244              | Man               |         | 1.39510        |   | 1.30.09      |            |  |
| 3.129              | 25541             | 0.30    | 1.19445        |   | 39656        |            |  |
| 3.160              | 24000             | 0.400   | 1              |   | .39594       |            |  |
| 2,952              | 23810             | 6.473   | 1_4061         |   | .39665       |            |  |
| 2.818              | 27727             | 0.440   | 1.35789        |   | 1.35389      |            |  |
| 2.07               | 21759             | 0.453   | 1.29110        |   | .36306       |            |  |
| 2.23               | A 44              | 0.480   | 1.19040        |   | 1.39735      |            |  |
| 1.000              |                   |         | 1              |   | 1.39164      |            |  |
| 2.2                | 18510             | 0.524   | 1.57923        |   | 1.37131      |            |  |
| 2.214              | 17017             | 0.440   | 1 \$7929       |   | 1 29711      |            |  |
| 3.138              | 17241             | 0.580   | 1.0709         |   | 19571        |            |  |
| 2.066              | 16617             | 0.470   | 1.57752        |   | LINN         |            |  |
| 2,000              | 16129             | 0.437   | 1.37718        |   | LUMP /       |            |  |
| 1.631              | 1.12              | 0,440   | 1_57629        |   | 38005        |            |  |
| 1.679              | 15152             | 0.489   | 1.37639        |   | 1.34385      |            |  |
|                    | 1410              |         | 1.1.010        |   | 1.35906      |            |  |
| 1 727              | 11000             | 0.300   | 1.57008        |   | 1.392.64     |            |  |
| 1.075              | 1351              | 1.70    | 1.17501        |   | 1.30130      |            |  |
| 1,601              | 13158             | 1.764   | 1.17544        |   | 19914        |            |  |
| 1.20               | 12:24             | 6.780   | 1.37574        |   | 1.36553      |            |  |
| 1.50               | 2500              | 0.800   | 1.37506        |   | 1.39514      |            |  |
| 1.50               | 12595             | 0.630   | 1.57480        |   | 13835        |            |  |
| 1.678              | 11909             | 0.50    | 1,17472        |   | 13639        |            |  |
| 1.442              | 1.626             | 0.050   | 1,045          |   | 1.5 S.2      |            |  |

TABLE II (Continue)

(continued)

| jägenin facik |           |              |           |    |         |          |  |
|---------------|-----------|--------------|-----------|----|---------|----------|--|
| ¢¥            | • • · · · | <b>_</b>     | Π.        | k. | ~       | <u>k</u> |  |
| 1,409         | 11354     | 0.550        | 1.3740    |    | 1.38596 |          |  |
| .275          | 1111      | 0.000        | . 37 - 26 |    | 1.38500 |          |  |
| 1.355         | 10070     | <u>a 830</u> | 1.3741    |    | 1.38573 |          |  |
| 6111          | 106.0     | 0.580        | 37500     |    | 1.30001 |          |  |
| 1.222         | 1047      | 0.960        | 373 H     |    | 1.35340 |          |  |
| 1.265         | 12204     | 0.900        | 3737      |    | 1.36533 |          |  |
| .240          | 1000      | 1.9060       | , 37352   |    | 1.35    |          |  |
| 1.275         |           |              | 37366     |    | 1.000   |          |  |
|               |           | 1.0417       |           |    |         |          |  |
|               | 7400      | 100.04       | 1.27315   |    | 1.544/8 |          |  |
| 1.116         | 0000      | 1 1 1 1      | 1 3733    |    | 1 284.0 |          |  |
| 1 200         |           | 1 1354       | 1.17977   |    |         |          |  |
| 2 2 6 4       | 0000      | 1.63         | 1.020     |    | 1.3446  |          |  |
| 1.204         | 100       | 1.1901       | 1.37247   |    | 1.35607 |          |  |
| 1.017         | 6300      | 1.195        | 1.37211   |    | 1.26345 |          |  |
| 0.5010        | 5000      | 1.2304       | 1.07313   |    | 1.38907 |          |  |
| 0.401         | 7200      | 1.251        | 1 71 7    |    | 1,34340 |          |  |
| 0.9423        | 7000      | 1.317\$      | 1 07179   |    | 38529   |          |  |
| 0,9175        | 7400      | 1.3514       | 1.371.0   |    | 3,60    |          |  |
| 0.0727        | 7300      | 1.1427       | 1,11110   |    | 3067    |          |  |
| 0,0579        | 2000      |              | 1.37118   |    | 1_38205 |          |  |
| 0.9431        | 600       | 470          | 1.32096   |    | 1.38240 |          |  |
| 0.0124        |           | 2111         | 137040    |    | 1.0011  |          |  |
| 0,7035        | 1400      |              | 1.77085   |    |         |          |  |
|               | 6300      | .m.25        | 370 7     |    | L78150  |          |  |
| 0,7120        |           | 10057        | 14463     |    |         |          |  |
| h 4111        | 600       | 7945         | 1 13017   |    | 1 364 9 |          |  |
|               | 5400      | 1 9410       | 1 33675   |    | 1.5000  |          |  |
| 6447          | 100       |              | 1.33635   |    | 1.37985 |          |  |
| 0.5199        | 5004      | 2.500        | 1.36784   |    | 1.57007 |          |  |
| 0.6675        | 400       | 2.04.0       | 1.35777   |    | 1.32079 |          |  |
| 0.665         | -1800     | 2.0635       |           |    | ,77999  |          |  |
| 0.5627        | 4700      | 2,1277       | 1.36699   |    | 1.37847 |          |  |
| 0.5716        | 400       | 2,1735       | 1.36550   |    | 37787   |          |  |
| 0.0575        | 4000      | 2 2222       | 1.1 6     |    | 27341   |          |  |
| 0.5425        | 6400      | 1.777        | 1.36377   |    | 3770    |          |  |
| 0.5531        | 4400      | 2,6200       | 1.36579   |    | 37607   |          |  |
| 0.240         | 4240      | 1 3 10       | 1.36318   |    | 3162    |          |  |
| 0,5003        | 4109      | 1.4990       | 1.3477    |    | 315%    |          |  |
| 0.0005        | 4000      | 2.6990       | 1.7474    |    | 13956   |          |  |
|               | 200       | 7.9641       | 1.3077    |    | 1.0472  |          |  |
| <b></b> 1     | 200       | 7.6310       | 30.2      |    | 1.3/40  |          |  |

TABLE II (Contamb

(continued)

| Magandha Daobh |        |         |            |                      |          |      |
|----------------|--------|---------|------------|----------------------|----------|------|
| ¢Y             | en - ' | ۶m      | R.,        | <i>k</i> ,           | л,       | 1. C |
| ù 4587         | 3700   | 2 7097  | 1.36261    |                      | 1.37348  |      |
| 0.463          | 3600   | 3.7716  | 1.36196    |                      | 1.37779  |      |
| 0.039          | 3700   | 2.217   | 1.3504     |                      | 1.37364  |      |
| 0.4235         | 3400   | 1.9412  | 13606      |                      | 1.37122  |      |
| 0.447          | 3.00   | 1.0303  | .33674     |                      | 1.763    |      |
| 0.3983         | 3700   | 3.12.90 | 1.19674    |                      | 1.36934  |      |
| 0.394          | 3100   | 1.13.55 | 135773     |                      | 1.39827  |      |
| 0.3720         | 300    | 3.1133  |            |                      | 1.80707  |      |
| 0.3350         | 1900   | 5,4685  | 1.32139    |                      | 1.3.573  |      |
| 0.917          |        | 33/14   | .35942     |                      | 1.5429   |      |
| 0.3365         | 1,00   | 3.1047  | 11000      |                      |          |      |
| 0 1100         | 2400   | 4 5260  | 1 16001    |                      | 1 24 671 |      |
| 0.2076         | 1100   | 3,1543  | 1 1 6 6 1  |                      | 1 64617  |      |
| 0.7857         | 7100   |         | 34412      |                      |          |      |
| 0.2723         | 1100   | 4 5451  | 1.441.21   |                      | 1 55040  |      |
| 4.2574         | 2005   | 4.2619  | 1.33762    |                      | 1 56700  |      |
| 0.3650         | 3200   | 5,2080  | 1.13474    | 4.2 - 16 - 7 3511    | 1.36349  |      |
| 0.2118         | 1550   | 5.1222  | 1.351.05   | 4.0-10-7             | 1.34054  |      |
| 0.2656         | 1900   | 5.2452  | 1.32948    | 8.5-10-1             | 1.35759  |      |
| 0.2254         | 1550   | 5.4054  | 1,10799    | 1.2-10               | 1.3152.  |      |
| 1,123          | 1500   | \$154   | 1.32405    | 1,7-10-4             | 1.33217  |      |
| 0.1]71         | 17.50  | 5.9144  | 1.1115     | 23-10-1              | 1.02951  |      |
| 0.2109         | 1700   | 5.0824  | L.31734    | 3.6-10               | 1.31588  |      |
| 0.2046         | 100    | 6.0504  | 1.31378    | \$1.10 <sup>-1</sup> | 1.32114  |      |
| 0.1444         | 1000   | 6.2500  | 1.17961    | 7.4-10               | 1.50666  |      |
|                | 112    | 6.4318  |            | 1,1,10-              | 1-11-1   |      |
|                | 1000   |         | 1.1.900    | 1.4-10-1             |          |      |
| 4 2714         | 1430   | 1 120   | 1.070      | 2.9-10               |          |      |
| 0.1435         | 1904   | 7 4034  | 1 341 0111 | 57.10-3              | 3        |      |
| d Held         | im     | 7 4975  | 1.211      | 44.10-1              | 1.277    |      |
| 0.1590         | 12:00  | 3,0000  | 1.25       | 1.3.10-1             | 1.1750   |      |
|                | 1200   | 6 13 43 | 352        | 1.5-10-1             | 1.917    |      |
| 0.5626         | 1230   | 4.4737  | 1.290      | 2.2 10               | 1.265    |      |
| 0.1864         | 1100   | 9.0706  | 1.25       | 64 ID-1              | 1.727    |      |
| 0.1300         | 1060   | 8.1235  | 1.255      | 7.1.10-4             | 1.202    |      |
| 0.1240         | 1903   | 10.0000 | 1,12       | 1.3-10-2             | 1.18     |      |
| 0. E115        | 560    | 10.204  | 1.17       | 13-10-1              | 1.17     |      |
| 0.1100         | 303    | 10.417  | 1,16       | 1.9-10-1             | 1.16     |      |
| 0.115          | 900    | 10.555  | 1.15       | 24-10-               | 1.19     |      |
| 0.1141         | 920    | 10.670  | 1.14       | 34.10                | 1.13     |      |
| 0.1116         | 900    | 11.111  | 1.12       | 3.7-10-1             | 1.12     |      |
| о, разу        | 240    | 11,38   | 1.11       | 4.4-10-3             | 1.10     |      |

TABLE D (Continue)

(antinua)

| hingandhay Physicilla |               |        |                |            |      |            |  |  |
|-----------------------|---------------|--------|----------------|------------|------|------------|--|--|
| ę¥                    | em -1         | judi.  | R.,            | <u>*.</u>  | Π,   | ۹,         |  |  |
| ê kûşî                | <b>\$</b> \$0 | 11.64  | 1.00           | 17-10-7    |      |            |  |  |
| 0. OC                 | <b>44</b> 0   | 11.000 | 1.07           | 69-10-1    | 1.06 |            |  |  |
|                       | 230           | 12.101 | I_D€           | 8/4-10-7   | 1.04 |            |  |  |
| 0.0902                | <b>1</b> 00   | 12.500 | 1.03           | 0.010      | 1.01 |            |  |  |
| 0.0951                | 760           | 12.721 | 0.91           | 0.012      |      |            |  |  |
| 0.0012                | 100           | 14-154 |                | 0.015      |      |            |  |  |
| 6.03UT                | 740           | 6.5M   | <b>1</b> 91    | 0.910      |      |            |  |  |
| 0.000                 | 130           |        |                | 0.022      |      | 73-00 - PU |  |  |
|                       |               | 1.00   | <b>1 1 1 1</b> | 4.14A      | 0.10 | 0.014      |  |  |
|                       |               |        | 0.71           | 0.041      | 0.07 | 0,041      |  |  |
|                       | 040           | 10,104 | 0.01           | 0,000      |      | 0.000      |  |  |
| 0.0174                | 040           | 120    |                | A 14       | 0.00 | A 24       |  |  |
|                       |               | 10.145 | 0.47           | 0.90       | A 14 | 0.73       |  |  |
| 0.0040                |               | 10,001 | A 14           | 0.20       | 0 14 | 0.38       |  |  |
| 0.0504                | 40            | 17.451 | 0.14           | 0.00       | . 1  | 6.91       |  |  |
| 0.0570                | 550           | 18.119 | 0.14           | 1.4        | 6.15 | 1.1        |  |  |
| 0.0541                |               | 9.271  | Q.13           | 1.5        | 0.14 | iii -      |  |  |
| 0.0510                | 503           | 20.000 | 0.17           | 1.9        | 0.15 | 1.7        |  |  |
| 0.0504                | <b>60</b> 0   | 70.00  | 0.21           | 2.2        | 0.17 | 1.4        |  |  |
| 0.0994                | 493           | 20.823 | 037            | 2.5        | 0.19 | 20         |  |  |
| 0.0583                | 470           | 21.377 | 9,47           | 3,L        | 0.23 | 21         |  |  |
| 0.0070                | 400           | 21.725 | D. 96          | <b>£</b> 9 | 0.27 | 23         |  |  |
| 0.0519                | 430           | 12,122 | 3.11           | 5.3        | 0.36 | 28         |  |  |
| 0.0545                | 440           | 12,797 | 4,97           | 1.6        | 0.40 | 22         |  |  |
| 0.0513                | 490           | 15.156 | 3.55           | 0.6        |      | 3.7        |  |  |
| 0.0023                | 420           | 13 110 | 2.99           | <u>e e</u> | 1.08 | 11         |  |  |
| 0.0500                | -00           | 14,390 | 2.79           | 22         | 2 19 | 10         |  |  |
| 0.066                 | 400           | 25,040 | 3.30           |            | 202  | **         |  |  |
| 0.0464                | 300           | 2.16   | 2.74           | 0.17       | 6.97 | 25         |  |  |
| 0.0071                | 700           | 2.10   | <b>1</b>       | 0.12       | 12   |            |  |  |
| 0.0116                | 400           | 77 716 | 2.00           | 0.007      | 190  | 0.40       |  |  |
|                       | 400           |        |                | n 500      | 3.61 | 0.20       |  |  |
| 0.0430                | 400           | 79,419 | 19             | 0.002      | 141  | 0.21       |  |  |
| 0.0500                | 110           | 10 347 | 46             | 807        | 177  | 0.14       |  |  |
| 0.0007                | -             | 51,750 | 1.30           | 0.081      | 101  | 0.15       |  |  |
| 0.0114                | 310           | 12.305 | 6.61           | B.15       | 1.90 | 0.11       |  |  |
| 0.0317                | 501           | 11 121 | 0.38           | D. 64      | 2.44 | 9,000      |  |  |
| 0.0360                | 250           | 34,483 | <u>01</u>      | 14         | 2.78 | 0.075      |  |  |
| 0.0557                | 20            | 39,714 | 011            | 20         | 2,69 | 0.005      |  |  |
| 0.053                 | 2.70          | 37.087 | 0.13           | 24         | 2.67 | 0.077      |  |  |
| 0.0522                | 250           | 15.452 | 0.12           | 44         | 2.91 | 0.000      |  |  |
| 0.0510                | 29            | 40.005 | 3.25           | 1.9        | 7.12 | 0.065      |  |  |
|                       |               |        |                | _          |      |            |  |  |

TABLE ( (Control)

(cambined)

| felagriature, Finantile |       |                     |                    |                      |                  |                             |  |  |
|-------------------------|-------|---------------------|--------------------|----------------------|------------------|-----------------------------|--|--|
| в¥                      | ••••• | <b>p</b> 2 <b>9</b> | ۹,                 | ٨,                   |                  | <i>t</i> .,                 |  |  |
| 0.0296                  | 240   | 41.667              | 6.19               | 0.49                 | 2.48             | 0.069                       |  |  |
| 0,0005                  | 230   | 4.4                 | 4.43               | 0.14                 | 2.44             | 0.034                       |  |  |
| 0.0273                  | 220   | 6.55                | 3.70               | 0.072                | 2.41             | 0.061                       |  |  |
| 0.0260                  | 210   | 47.017              | 3.40               | 0.042                | 7.38             | Q-427                       |  |  |
| 0.0248                  | 200   | 50.600              | 3.66               | 0.072                | 2.55             | 0.024                       |  |  |
| 0.0230                  | 90    | 12.672              | 7.99               | 0.032                | 2.35             | 0.022                       |  |  |
| 0.023                   | 60    | 55.55               | 2.87               | 0.0L9                | 2.51             | 0.020                       |  |  |
| 0.0311                  | 130   | 55,874              | 3.76               | 100 S                | 2.29             | 6.018                       |  |  |
| 0.0190                  | 100   | 67.30               | 2.70               | U.DLI                | 2.27             | 0-046                       |  |  |
| O DIPE                  | 150   | 66.667              | 3.64               | <b>AD</b> []         | 2.25             | 6.015                       |  |  |
| 0.DT74                  | HQ -  | 71,425              | 7.59               | 9.3-10-1             | 2.24             | 0.013                       |  |  |
| 0.0061                  | 170   | N 103               | 2.54               | 8-01-0-3             | 2.22             | 6.012                       |  |  |
| 0.0149                  | 120   | 323                 | 2.31               | 7.0-10-1             | 2.71             | 0.011                       |  |  |
| 0.0170                  | 10    | 90.909              | 2.48               | 6.1-10-3             | 2.29             | 2 D -                       |  |  |
| 0.0 Z                   | нщ    | 001.00              | 2.45               | 5.2-10               | ¥.19             | \$1, 10 · 1                 |  |  |
| 600 D                   | 90    | 63 6. 13            | 2.43               | 4.5-10-              | 218              | 7J 10-1                     |  |  |
| 0.009                   | 50    | 25.00               | 2.41               | 3, 10-               | æ.10             | <b>6</b> - 10 -             |  |  |
| 0.0037                  | 70    | 47.86               | 2.39               | 3.3-10-3             | 2.17             | 3.4 E -?                    |  |  |
| 0.004                   | 50    | 105.51              | 2.38               | 2.0 10               | 2.17             | 4.7.10                      |  |  |
| 0.0062                  | 50    | 200.60              | 2.37               | 23-10-               | 2.16             | 3.9 ED                      |  |  |
| 0.009                   | 40    | 250.00              | 7.38               | L8-10 <sup>-1</sup>  | 2.16             | <b>1.1</b> 10 <sup>-7</sup> |  |  |
| 0.0087                  | 30    | 10710               | 2.15               | L.3-10-*             | 2.15             | 2.4 10 -                    |  |  |
| 0.002                   | 22.3  | 411.17              | 2,29 [47]          | 74-10 PD             | 2.100 [77]       | 71-10_61                    |  |  |
| 0.0035                  | 20    | 309.0               | 135 [BI]           | 5.7-10 [91]          | 212 [31]         | 17-10-, RÚ                  |  |  |
| 0.0023                  | 16.7  | 000.0               | 2,745 [47]         | 1.4 10 [47]          | 2.00 (07)        | 1.7 10 47                   |  |  |
| 6700Ra                  | 15    | 665.57              | 2.94 [31]          | £5-10-1 [91]         | 215 [71]         | TI-10-, DI                  |  |  |
| 0.0012                  | w     | 0.080               | 2,555 [47]         | 1.0-10 PTT           | 2.03 [07]        | LO 10 - H7]                 |  |  |
|                         |       |                     | 2.5 [3]            | 43-10- <u>1</u> [11] | របុព             | 3.0-10 [31]                 |  |  |
| 0.0006                  | 5     | 2060.0              | 14                 | 2.1.10               | 215              | 1.1-10                      |  |  |
| 0.0000                  | -0    | -                   | 2.24<br>2.543 (49) | Q                    | 2.15<br>2.67 (eg | 0                           |  |  |

TABLES (Contam)

References are indicated in brackets. <sup>4</sup>Ordinary data from William and Aminawa [23] and encousions dispersion data from Chardenesisters and Damany [24] are combined to estimate extended inaryray india.

| Values of $dn_0/dT$ Obtained from Various References for Magnesium Fluo |                  |        |                      |               |  |  |
|-------------------------------------------------------------------------|------------------|--------|----------------------|---------------|--|--|
| eV                                                                      | cm <sup>-1</sup> | μm     | $dn_o/dT$ (1/K)      | Notes         |  |  |
| 2.708                                                                   | 21839            | 0.4579 | $1.47 \cdot 10^{-6}$ | 20°C [28]     |  |  |
| 1.959                                                                   | 15803            | 0.6328 | $1.12 \cdot 10^{-6}$ | 20°C [28]     |  |  |
| 1.078                                                                   | 8696             | 1.15   | $0.88 \cdot 10^{-6}$ | 20°C [28]     |  |  |
| 0.366                                                                   | 2950             | 3.39   | $1.1 \cdot 10^{-6}$  | 20°C [28]     |  |  |
| 0.0                                                                     | ≈0               | _      | $1.0 \cdot 10^{-4}$  | Our data [51] |  |  |

TABLE III

Values of  $dn_0/dT$  Obtained from Various References for Magnesium Fluoride

TABLE IV

## Values of $dn_e/dT$ Obtained from Various References for Magnesium Fluoride

| eV    | $\mathrm{cm}^{-1}$ | $\mu m$ | $dn_e/dT$ (1/K)      | Notes     |
|-------|--------------------|---------|----------------------|-----------|
| 2.708 | 21839              | 0.4579  | $0.86 \cdot 10^{-6}$ | 20°C [28] |
| 1.959 | 15803              | 0.6328  | $0.58 \cdot 10^{-6}$ | 20°C [28] |
| 1.078 | 8696               | 1.15    | $0.32 \cdot 10^{-6}$ | 20°C [28] |
| 0.366 | 2950               | 3.39    | $0.6 \cdot 10^{-6}$  | 20°C [28] |