Contents lists available at ScienceDirect

CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry

journal homepage: www.elsevier.com/locate/calphad

Measurements and calculations of solid–liquid equilibria in the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K

Rui-Zhi Cui^{a,b}, Lei Yang^{a,b}, Ting-Ting Zhang^{a,b}, Xue-Ping Zhang^{a,b}, Shi-Hua Sang^{a,b,*}

^a College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China
^b Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, Chengdu 610059, PR China

ARTICLE INFO

Article history: Received 11 March 2016 Received in revised form 24 June 2016 Accepted 25 June 2016 Available online 17 July 2016

Keywords: Underground brine Thermodynamic solid–liquid equilibrium Solubility Phase diagram Pitzer approach

ABSTRACT

Solid–liquid equilibria in the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K were measured by isothermal solution saturation method. The equilibrium solid phase and solubilities of salts in the system were determined. The experimental data are used to plot the solubility diagram and water content diagram of the quaternary system. It was found that quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K contains the double salt Na₂SO₄·3K₂SO₄ (Gla), and its solubility diagram has four invariant points, nine univariant curves, and six crystallization fields. The solids are NaBr·2H₂O, Na₂SO₄, Na₂SO₄·10H₂O, K₂SO₄, KBr and Na₂SO₄·3K₂SO₄ (Gla). The values of binary and mixing interaction parameters, the Debye–Hückel parameter A^{ϕ} and the standard chemical potentials of the salts in the quaternary system at 298 K were obtained from the literature and adapted to standard temperature. Based on the Pitzer approach, the solubilities in the system NaBr–KBr–Na₂SO₄–H₂O at 298 K have been calculated using the parameters. The calculated and measured phase diagram of the quaternary system was plotted. The results show that the calculated solubilities agree well with the experimental data.

© 2016 Published by Elsevier Ltd.

1. Introduction

There are abundant liquid mineral resources in China, especially, in Western Sichuan Basin. These have very good exploitation prospect due to the gradual exhaustion of solid resources. The brines contain high concentration of potassium, borate and bromine. The highest content of potassium is as high as 53.27 g L^{-1} ; the borate content is up to 4994.36 mg L⁻¹ and in particular, the bromine content is also up to 2533 mg L⁻¹. It has become the rare liquid potassium boron bromine mineral resources in the world [1]. Generally speaking, phase equilibria and phase diagrams are the theoretical basis of the exploitation and utilization of underground brine resources. According to the compositions, the underground gasfield brines in Sichuan Basin can be considered as Na-K-Cl-Br-SO₄-B₄O₇-H₂O system. The phase equilibria of some subsystems of the underground brine in Western Sichuan basin have been carried out by our group: such as Na₂B₄O₇-Na₂SO₄-NaBr-H₂O at 298 K, 323 K and 348 K [2-4], Na-K-Cl-SO₄-B₄O₇-H₂O at 298 K and 323 K [5,6].

The solubilities data in salt-water system depends principally

on experimental measurement. It is often tedious and the accuracy is strongly influenced by experimental condition. Therefore, many scientists have been trying to search calculated method with high accuracy to supplement and revise experimental measurements at 298 K or selected temperatures. In a series of papers Harvie et al. developed a model, based on Pitzer equations [7,8] to predict solubilities in seawater system Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₃-CO₂-H₂O at 25 °C [9-11]. Then, Kim and Friedrick have provided many single-salt parameters and mixing ion-interaction parameters at 25 °C, it can be applied to make the Pitzer equation to 20 mol kg⁻¹ ionic strength [12,13]. Furthermore, Christov and Moller developed a thermodynamic model for solution behavior and solid-liquid equilibria in the H-Na-K-Ca-OH-Cl-HSO4-SO4-H₂O system from zero to high concentration and temperature [14– 16]. For bromide systems, Christov and co-workers [17-26] develop a well validated and fully consistent model for Li-Na-K-NH₄-Rb-Cs-Mg-Ca-Cl-Br-H₂O system at standard temperature, and for some ternary subsystems at 0 °C, 50 °C and 75 °C [17,21,23,25]. As a next step, Christov determine osmotic coefficients on the basis of isopiestic measurements for binary bromide sub-systems and solubilities in ternary sub-systems within Na-K-Mg-Ca-Br-SO₄-H₂O system [27-32].

The quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O is one subsystem of the underground gasfield brines in Sichuan Basin. Measurements and calculations of solid–liquid equilibria in this

^{*} Corresponding author at: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China. *E-mail addresses:* sangshihua@sina.com.cn, sangsh@cdut.edu.cn (S.-H. Sang).

quaternary system at 323 K have been published in our previous work [33,34], but there is no research report about the phase equilibria in the system at 298 K, which is the objective of this work. In this paper, the research work includes three parts: (1) Measure the solubilities in the equilibrium solution for the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K by isothermal solution saturation method. (2) Calculate solubilities in the quaternary system at 298 K. And (3) Compare calculated solubilities with experimental data of this system.

2. Experimental

Table 1

2.1. Reagents and instruments

The deionized water (electrical conductivity less than 1.2×10^{-4} S m⁻¹, pH=6.6) used to prepare the experimental solutions was

obtained from a Millipore water system. All chemicals used in this work, including sodium bromide (NaBr, 99.0 wt%), potassium bromide (KBr, 99.0 wt%), sodium sulfate (Na₂SO₄, 99.0 wt%), and potassium sulfate (K₂SO₄, 99.0 wt%), were of analytical purity grade and obtained from Chengdu Kelong Chemical Reagent Factory, China.

A standard analytical balance of 110 g capacity and 0.0001 g resolution (AL104), manufactured by the Mettler Toledo Instruments, was used. An HZS-H type thermostated vibrator with a precision \pm 0.1 K was used for the equilibrium measurements. Its temperature control accuracy is \pm 0.1 K after secondary calibration using precise thermometer.

2.2. Experimental method

The experiments for the quaternary system have been done by the method of isothermal solution saturation. According to the

Solubilities of solution in the quaternary system NaBr-KBr-Na₂SO₄-K₂SO₄-H₂O at 298 K.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.	Composition	of liquid phase <i>w</i> ($(B) \times 100$		Jänecke inde	x	Equilibrium solids	
						$J(2Na^+)+J(2$	J(2Na ⁺)+J(2 K ⁺)=100 mol		
F_1 726 27 247 241 16.95 81.78 100.00 2035.60 $NS10+Ga$ 2 725 267 2.41 16.95 82.22 92.14 2045.20 $NS10+Ga$ 4 637 2.51 7.41 12.98 82.23 74.46 21465.1 $NS10+Ga$ 5 6.61 2.44 10.58 10.86 82.26 2146.51 $NS10+Ga$ 6 6.27 2.23 14.23 7.28 82.27 43.98 2357.13 $NS+Ga$ 7 6.57 2.33 20.61 41.65 82.26 23.15 2137.39 $NS+Ga$ 2.9 2.13 4.59 0.00 10.08 4402 100.00 44012 $KS+Ga$ 10 2.09 4.53 2.66 8.33 43.96 83.89 4419.97 $KS+Ga$ 11 2.19 4.72 5.15 7.27 4466 70.15 415.04 $KS+Ga$ 12 2.06 4.73 8.27 514 42.28 50.82 4205.39 $KS+Ga$ 12 2.06 4.73 8.27 514 42.58 50.82 4205.39 $KS+Ga$ 12 2.06 4.73 8.77 23.80 $407.95.3$ $KS+Ga$ 12 2.06 4.73 8.77 32.88 $407.85.3$ $KS+Ga$ 12 2.06 4.73 8.76 $8.76.3$ 8.77 32.88 $407.85.3$ 12 2.95 5.51 <t< th=""><th></th><th>w(Na⁺)</th><th><i>w</i>(K⁺)</th><th>w(Br⁻)</th><th>w(SO₄²⁻)</th><th>J(2Na⁺)</th><th><i>J</i>(SO₄²⁻)</th><th><i>J</i>(H₂O)</th><th></th></t<>		w(Na ⁺)	<i>w</i> (K ⁺)	w(Br ⁻)	w(SO ₄ ²⁻)	J(2Na ⁺)	<i>J</i> (SO ₄ ²⁻)	<i>J</i> (H ₂ O)	
2 725 2.67 2.41 16.98 82.22 92.14 2045.20 NS10 - Gla 4 6.67 2.51 7.41 12.98 82.34 7.45 2146.51 NS10 - Gla 6 6.67 2.24 10.58 10.86 82.06 63.06 216.51 NS10 - Gla 6 6.27 2.22 14.23 7.28 82.75 45.98 2357.13 NS - Gla 7.9 8.29 3.54 3.499 0.62 7.952 2.87 129.35 Cla + NS + KB 0.9 2.13 4.59 0.00 10.08 4.09 10.00 4419.57 KS - Gla 11 2.19 4.72 5.15 7.27 4.06 7.015 4.105.8 KS - Gla 12 2.06 4.73 8.27 5.14 4.2.58 0.502 8.39 4.05.39 KS - Gla 13 2.08 4.33 10.30 4.99 9.00 111.15<	F, 1	7.26	2.75	0.00	18.55	81.78	100.00	2053.60	NS10+Gla
3 6.91 2.52 5.18 14.41 82.36 82.23 2158.43 N510-Ga 5 6.81 2.44 10.58 10.86 82.60 63.06 2146.24 N510-Ga 6 6.27 2.22 14.23 72.8 82.75 45.98 23.51 N5-Ga 7 6.55 2.33 2.061 4.16 82.69 2.87 123.56 Cla+N5+K8 D.9 2.13 4.59 0.00 10.08 44.09 100.00 4401.26 KS-Ga 10 2.09 4.53 2.66 8.33 4.395 50.82 405.14 KS-Ga 11 2.19 4.72 5.15 7.27 44.06 70.15 415.44 KS-Ga 12 2.06 4.73 8.27 51.44 42.58 50.82 407.53 KS-Ga 14 2.15 6.05 16.15 2.21 7.63 18.75 28.14 11.8 10.8 9.00 1116.1	2	7.25	2.67	2.41	16.98	82.22	92.14	2045.20	NS10+Gla
4 6.87 2.51 7.41 12.98 82.34 7.44.52 2146.51 NS10+Cha 6 6.81 2.44 10.58 10.86 82.60 63.60 2146.24 NS10+Cha 6 6.77 2.52 12.32 12.32 12.33 NS+Gla 7.8 8.29 3.54 34.99 0.62 79.92 2.87 123.39 NS+Gla 10 2.09 4.53 2.66 8.33 43.96 70.00 41.95 KS+Gla 11 2.19 4.72 5.15 7.27 4.46 70.53 41.957 KS+Gla 12 2.06 4.73 8.27 5.14 42.58 50.82 4205.31 KS+Gla 13 2.08 4.83 10.30 4.09 40.20 1872.38 KS+Gla 14 2.15 6.05 16.15 2.21 37.63 18.57 323.18 KS+Gla 14 2.15 0.05 16.9 9.04<	3	6.91	2.52	5.18	14.41	82.36	82.23	2158.43	NS10+Gla
5 6.81 2.44 10.85 10.86 82.60 63.06 2146.24 NS1+Cla 7 6.55 2.33 2.061 4.16 82.69 25.15 2137.39 NS+Cla 7.8 82.99 3.54 34.99 0.62 7.92 2.87 123.65 Gla+NS+KB 0.9 2.13 4.59 0.00 10.08 44.09 100.00 401.26 KS+Cla 10 2.09 4.53 2.66 8.33 43.96 83.96 419.97 KS+Cla 11 2.19 4.72 5.15 7.27 44.06 70.15 419.97 KS+Cla 12 2.06 4.73 8.27 5.14 42.58 50.82 4203.39.80 470.79.53 KS+Cla 14 2.15 2.58 9.51 2.76 38.96 0.00 87.43 0.00 111.45 NB+KB 17 9.65 2.61 38.70 0.21 85.59 0.47 1058.45	4	6.87	2.51	7.41	12.98	82.34	74.45	2146.51	NS10+Gla
6 6.27 2.22 14.23 7.28 82.75 45.98 2357.13 NS+Cla E2, 8 8.29 3.54 34.99 0.62 79.92 2.87 1293.65 Gla+NS+K8 D.9 2.13 4.59 0.00 10.00 10.00.0 4.53 Cla+NS+K8 10 2.09 4.53 2.66 8.33 43.96 70.8 4419.97 KS+Cla 12 2.06 4.73 8.27 5.14 42.58 50.82 4205.39 KS+Cla 13 2.08 4.83 10.30 4.09 42.03 39.80 4707.53 KS+Cla 14 2.15 6.05 15.15 2.21 37.63 18.57 3283.18 KS+Cla 14 2.15 6.05 2.61 38.70 0.09 86.26 0.40 1111.45 NB+KB 17 9.64 2.76 38.67 0.12 85.38 0.51 1107.57 NB+KB 18 <	5	6.81	2.44	10.58	10.86	82.60	63.06	2146.24	NS10+Gla
7 6.55 2.33 20.61 4.16 82.09 25.15 213.29 NF-Gla D.9 2.13 4.59 0.00 100.8 44.09 100.00 4401.26 KF-Gla D.0 2.09 4.53 2.66 8.33 4.396 83.89 4419.97 KS + Gla 11 2.06 4.73 8.27 5.14 4.258 50.82 4205.39 KS + Gla 12 2.06 4.73 8.27 5.14 4.258 50.82 4205.39 KS + Gla 13 2.08 4.83 10.30 4.09 42.30 39.80 4079.53 KS + Gla 14 2.15 6.05 16.15 2.21 37.63 18.57 3283.18 KS + Gla 14 2.15 6.26 0.00 87.43 0.00 1111.63 NB+ KB 14 9.62 2.67 38.67 0.12 85.98 0.51 1116.21 NB+ KB 15 9.62	6	6.27	2.22	14.23	7.28	82.75	45.98	2357.13	NS+Gla
E2, 88.293.543.4990.627.9922.87129.65Gla+NS+KB102.094.532.668.334.499100.004401.26KS+Cla112.194.725.157.274.4067.0154150.41KS+Cla122.064.738.275.1442.585.0824205.39KS+Cla132.084.8310.304.0942.3039.804079.53KS+Cla142.156.0516.152.213.76318.573283.18KS+Cla8,169.802.4038.960.0087.430.001111.45NB+KB179.652.6138.700.0986.260.401116.80NB+KB189.642.7638.980.1285.590.471098.45NB+KB209.782.7139.230.1285.980.511116.21NB+KB219.652.7038.670.2285.860.951107.57NB+KB240.6412.802.7530.611.4523.30118.21NB+KB251.211.202.7938.670.2285.860.951107.57NB+KB240.6412.802.7530.517.853.00182.71NS+KB+NB251.211.202.790.920.651.8473.70176.466KS+KB261.551.64	7	6.55	2.33	20.61	4.16	82.69	25.15	2137.39	NS+Gla
D, 92.134.590.0010.0844.0910.004410.26KS+Cla102.094.532.668.3343.9683.894419.70KS+Cla112.164.738.275.144.2585.0824205.39KS+Cla132.084.8310.304.0942.3039.804079.33KS+Cla142.156.0516.152.2137.6318.57328.18KS+Cla142.156.0516.152.2137.6318.77328.18KS+Cla169.802.4038.960.0087.430.00111.65NB+KB179.652.6138.700.0986.260.401116.80NB+KB189.642.7638.960.1185.990.471098.45NB+KB199.622.6738.670.2285.880.951107.57NB+KB209.782.7139.230.1886.000.75107.89.5NB+KB219.651.843.800.5117.853.00132.71KS+KB23.20.611.3772.7380.661.8473.70176.46KS+KB240.641.2802.730.737.853.01152.70Cla+KB251.211.202.930.734.763.91156.70Cla+KB261.551.642.8100.737.636 <td>E2, 8</td> <td>8.29</td> <td>3.54</td> <td>34.99</td> <td>0.62</td> <td>79.92</td> <td>2.87</td> <td>1293.65</td> <td>Gla+NS+KB</td>	E2, 8	8.29	3.54	34.99	0.62	79.92	2.87	1293.65	Gla+NS+KB
10 2.09 4.53 2.66 8.33 43.6 8.38 44.19.7 KS+Cla 11 2.19 4.72 5.15 7.7 44.06 70.15 415.04 KS+Cla 12 2.06 4.73 8.27 5.14 42.58 50.82 4205.39 KS+Cla 13 2.08 4.83 10.30 4.09 42.30 39.80 40.95.31 KS+Cla 14 2.15 6.05 16.15 2.21 37.63 38.57 328.51.8 KS+Cla+KB 8,16 9.80 2.40 38.96 0.00 87.43 0.00 111.45 NB+KB 18 9.64 2.76 38.80 0.11 85.59 0.47 1098.45 NB+KB 20 9.78 2.71 39.23 0.18 86.00 7.5 1078.95 NB+KB 21 9.64 2.76 38.67 0.22 85.82 0.61 1106.71 NS+KB 22 9.77 </td <td>D, 9</td> <td>2.13</td> <td>4.59</td> <td>0.00</td> <td>10.08</td> <td>44.09</td> <td>100.00</td> <td>4401.26</td> <td>KS+Gla</td>	D, 9	2.13	4.59	0.00	10.08	44.09	100.00	4401.26	KS+Gla
112.194.725.157.2744.0670.154150.41KS+Cla122.064.738.275.1442.5850.82420.5.39KS+Cla132.084.8310.304.0942.3039.804079.53KS+Cla142.156.0516.152.2137.6318.57328.18KS+Cla+KB169.802.4038.960.0087.430.00111.45NB+KB179.652.6138.700.0986.260.401116.50NB+KB189.642.7638.980.1185.980.511116.21NB+KB209.822.6738.670.1285.980.511116.21NB+KB219.622.6738.670.2285.880.951107.57NB+KB23.229.572.8138.590.2585.261.081108.71NS+KB240.6412.802.730.661.453.30138.96KS+KB251.211.202.730.661.8473.70176.46KS+KB261.55116.428.100.651.8473.70176.46KS+KB272.411.0572.8570.702.7323.90172.433KS+KB261.55116.428.100.747.393.51156.14KS+KB272.411.0572.8570.737.636 <td>10</td> <td>2.09</td> <td>4.53</td> <td>2.66</td> <td>8.33</td> <td>43.96</td> <td>83.89</td> <td>4419.97</td> <td>KS+Gla</td>	10	2.09	4.53	2.66	8.33	43.96	83.89	4419.97	KS+Gla
122.064.738.275.144.2.85.0824.205.39KS+Cla132.084.8310.304.094.2.3039.804079.53KS+Cla142.156.0516.152.2137.6318.57328.318KS+ClaE1,152.589.5127.260.6931.6040.21872.38KS+Cla+KBB,169.802.4038.960.0087.430.001114.5NB+KB179.652.6138.700.0986.260.401116.80NB+KB189.642.7638.980.1185.590.471098.45NB+KB209.782.7139.230.1886.090.511116.21NB+KB219.552.7036.670.2285.880.511107.57NB+KB239.572.8138.590.2585.261.081108.71NS+KB+NB4,230.0013.777.780.6014.573.001828.71KS+KB240.6412.602.7118.964KS+KB1.5511.65.70Cla+KB251.1012.1027.920.6014.573.001828.71KS+KB261.5511.642.800.6518.473.701764.66KS+KB272.3410.5728.570.737.363.811547.46Cla+KB307.665.053.650.74	11	2.19	4.72	5.15	7.27	44.06	70.15	4150.41	KS+Gla
132.084.8310.304.094.2039.804079.53KS+Cla142.156.0516.152.2137.6318.57328.18KS+Cla15.152.589.5127.260.6931.604.021872.38KS+Cla+KB169.802.4038.960.0087.430.001111.45NB+KB179.652.6138.700.0986.260.40116.80NB+KB189.642.7638.980.1185.950.471098.45NB+KB199.622.6738.670.1285.980.51116.21NB+KB209.782.7139.230.1886.000.751078.95NB+KB219.652.6138.670.2285.261.081106.71NS+KB+NB23.229.572.8138.670.2585.261.081108.71NS+KB+NB240.6412.802.7530.517.853.001828.71KS+KB251.2112.102.7920.6014.523.431734.19KS+KB261.551.16428.100.6518.673.911625.70Cla+KB272.3410.5728.330.7342.663.911625.70Cla+KB2838.28.7028.830.747.0393.51156.54NS+NB307.665.053.550.74<	12	2.06	4.73	8.27	5.14	42.58	50.82	4205.39	KS+Gla
142.156.0516.152.2137.6318.57328.18KS+ClaE1, 152.589.5127.260.6931.604.02187.238KS+Cla+KBB, 169.802.4038.960.0087.430.001111.45NB+KB179.652.6138.700.0982.260.401111.63NB+KB189.6442.7638.670.1285.980.511116.21NB+KB199.622.6738.670.2285.880.951107.57NB+KB219.652.7038.670.2285.880.951107.57NB+KB23,229.572.8138.590.2585.261.081108.71NS+KB+NB4, 230.0013.7727.380.460.002.71133.96.44KS+KB240.641.2802.7530.511.78.53.001828.71KS+KB251.2112.102.7920.6014.523.43178.19KS+KB261.5511.6428.100.6518.473.701764.66KS+KB272.3410.5728.570.7342.763.91162.57C da+KB283.828.723.90172.433KS+KB1.511169.25NS+NB294.967.293.050.747.3363.513.61169.25NS+NB311.021.030	13	2.08	4.83	10.30	4.09	42.30	39.80	4079.53	KS+Gla
F1.152.589.512.7260.6931.604.02187.238KS+Cla+KBB. 169.802.4038.960.0087.430.00111.45NB+KB179.652.6138.700.0986.260.40111.680NB+KB189.642.7638.980.1185.590.471098.45NB+KB199.622.6738.670.1285.980.511116.21NB+KB209.782.7139.230.1886.000.751078.95NB+KB219.652.7038.670.2285.880.951108.71NS+KB+NBA,230.0013.772.7380.460.002.71183.964KS+KB240.6412.802.7530.517.853.001828.71KS+KB251.2112.102.7920.6014.523.431784.19KS+KB261.551.16428.100.6518.473.70174.66KS+KB272.341.0572.85.70.7027.323.901724.33KS+KB283.828.702.98.30.747.0363.51165.70Cla+KB294.967.293.0920.747.3653.511547.46Gla+KB307.065.053.3.650.747.0393.531360.14Gla+KB318.124.273.570.73	14	2.15	6.05	16.15	2.21	37.63	18.57	3283.18	KS+Gla
B, 169.802.4038.960.0087.430.00111.45NB+KB179.652.6138.700.0986.260.401116.80NB+KB189.642.7638.980.1185.590.471098.45NB+KB199.622.6738.670.1285.980.511116.21NB+KB209.782.7139.230.1886.000.751078.95NB+KB219.652.7038.670.2285.880.951107.57NB+KB63,229.572.8138.590.2585.261.081108.71NS+KB+NB64,230.0013.772.73.80.460.002.711839.64KS+KB240.6412.802.7530.517.853.00182.87.1KS+KB251.2112.102.7920.6014.523.431784.19KS+KB261.5511.6428.100.6518.473.701764.66KS+KB272.3410.5728.570.7027.323.901724.33KS+KB283.828.702.93.30.7342.763.811547.46Gla+KB294.967.293.0920.7453.653.811547.46Gla+KB318124.273.5750.7376.363.271226.98Gla+KB331.0880.303.7820.34	E1, 15	2.58	9.51	27.26	0.69	31.60	4.02	1872.38	KS+Gla+KB
179.652.6138.700.0986.260.401116.80NB+KB189.642.7638.690.1185.590.471098.45NB+KB199.622.6738.670.1285.980.511116.21NB+KB209.782.7139.230.1886.000.751078.95NB+KB219.652.7038.670.2285.880.951107.57NB+KBE3, 229.572.8138.590.2585.261.081108.71NS+KB+NBA, 230.0013.7727.380.460.002.71139.64KS+KB240.6412.8027.530.517.853.001828.71KS+KB251.2112.1027.920.6014.523.431784.19KS+KB261.5511.6428.100.65184.73.701764.66KS+KB272.3410.5728.570.7027.323.901724.33KS+KB283.828.702.990.7470.393.531360.14Ga+KB307.065.0533.650.7470.393.531360.14Ga+KB318.124.2735.750.7376.363.271226.98Ga+KB3310.880.3037.820.3496.721.491169.45NS+NB3410.720.6237.930.3496.	B, 16	9.80	2.40	38.96	0.00	87.43	0.00	1111.45	NB+KB
189.642.7638.980.1185.590.471098.45NB+KB199.622.6738.670.1285.980.511116.21NB+KB219.652.7038.670.2285.880.951107.57NB+KB219.572.8138.590.2585.261.081108.71NS+KB+NB4,230.0013.772.7380.517.853.001828.71KS+KB240.6412.802.7530.517.853.001828.71KS+KB251.2112.1027.920.6014.523.431764.19KS+KB261.5511.6428.100.6518.473.701764.66KS+KB272.3410.5728.570.7027.323.901724.33KS+KB283.828.7029.830.7342.763.91162.57.0Gla+KB307.065.0533.650.7470.393.531360.14Gla+KB318.124.2735.750.7376.363.27126.98Gla+KB3310.880.3037.820.3496.721.491160.46NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3496.721.491160.46NS+NB3610.281.4338.120.298	17	9.65	2.61	38.70	0.09	86.26	0.40	1116.80	NB+KB
199.622.6738.670.1285.980.51116.21NB+KB209.782.7139.230.1886.000.751078.95NB+KB219.652.7038.670.2285.880.951107.57NB+KBE3.229.572.8138.590.2585.261.081108.71N5+KB+NBA,230.0013.7727.380.460.002.711839.64KS+KB240.6412.8027.530.517.853.00182.71KS+KB251.2112.1027.920.6014.523.431784.19KS+KB261.5511.6428.100.6518.473.701764.66KS+KB272.3410.5728.570.7027.323.901724.33KS+KB283.828.7029.830.7342.763.911625.70Gla+KB294.967.2930.920.7453.653.811547.46Gla+KB3181.24.2735.750.7376.363.271226.98Gla+KB3310.880.3037.820.3496.721.491160.46NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.820.26	18	9.64	2.76	38.98	0.11	85.59	0.47	1098.45	NB+KB
209.782.7139.230.1886.000.751078.95NB+KB219.652.7038.670.2285.880.951107.57NB+KBA.230.0013.7727.380.460.002.711839.64KS+KB+NB240.6412.8027.530.517.853.001828.71KS+KB251.2112.1027.920.6014.523.431784.19KS+KB261.5511.6428.100.6518.473.701764.66KS+KB272.3410.5728.570.7027.323.901724.33KS+KB283.828.7029.830.7342.763.91162.570Cla+KB307.065.053.3650.7470.393.531360.14Cla+KB318.124.2735.750.7376.363.271226.98Cla+KB3310.880.0037.700.38100.001.661176.95NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.45NS+NB3610.281.433.8120.2685.411.081092.65NS+NB379.802.563.8820.2986.681.251094.61NS+NB389.662.813.830.268	19	9.62	2.67	38.67	0.12	85.98	0.51	1116.21	NB+KB
219.652.7038.670.2285.880.951107.57NB+KBE3,229.572.8138.590.2585.261.081108.71NS+KB+NBA,230.0013.7727.380.460.002.711839.64K5+KB240.6412.8027.530.517.853.001828.71KS+KB251.2112.1027.920.6014.523.431784.19K5+KB261.5511.6428.100.6518.473.701764.66K5+KB272.3410.5728.570.7027.323.901724.33K5+KB283.828.7029.830.7342.763.911625.70Gla+KB307.065.0533.650.7470.393.531360.14Gla+KB318.124.2735.750.7376.363.271226.98Gla+KB3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3292.441.371143.94NS+NB3610.281.4338.120.2986.681.251094.61NS+NB379.802.5638.870.2685.411.08109.265NS+NB389.662.8138.870.26 <t< td=""><td>20</td><td>9.78</td><td>2.71</td><td>39.23</td><td>0.18</td><td>86.00</td><td>0.75</td><td>1078.95</td><td>NB+KB</td></t<>	20	9.78	2.71	39.23	0.18	86.00	0.75	1078.95	NB+KB
E3,229.572.8138.590.2585.261.081108.71NS+KB+NBA,230.0013.7727.380.460.002.711839.64KS+KB240.6412.8027.530.517.853.001828.71KS+KB251.2112.1027.920.6014.523.431784.19KS+KB261.5511.6428.100.6518.473.701764.66KS+KB272.3410.5728.570.7027.323.901724.33KS+KB283.828.7029.830.7342.763.911625.70Gla+KB307.065.0533.650.7470.393.531360.14Gla+KB318.124.2735.750.7376.363.271226.98Gla+KB3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.471169.46NS+NB3510.450.9837.740.3494.791.471169.45NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.811.081092.65NS+NB389.662.8138.820.2986.811.081092.65NS+NB379.802.5638.820.29 <t< td=""><td>21</td><td>9.65</td><td>2.70</td><td>38.67</td><td>0.22</td><td>85.88</td><td>0.95</td><td>1107.57</td><td>NB+KB</td></t<>	21	9.65	2.70	38.67	0.22	85.88	0.95	1107.57	NB+KB
A, 230.0013.7727.380.460.002.711839.64KS+KB240.6412.8027.530.517.853.001828.71KS+KB251.2112.1027.920.6014.523.431784.19KS+KB261.5511.6428.100.6518.473.701764.66KS+KB272.3410.5728.570.7027.323.901724.33KS+KB283.828.7029.830.7342.763.911625.70Gla+KB294.967.2930.920.7453.653.811547.46Gla+KB307.065.0533.650.7470.393.531360.14Gla+KB318.124.2735.750.7376.363.271226.98Gla+KB3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.820.2985.641.920.55S10+NS408.820.411.7168.6497.35 <td< td=""><td>E3, 22</td><td>9.57</td><td>2.81</td><td>38.59</td><td>0.25</td><td>85.26</td><td>1.08</td><td>1108.71</td><td>NS + KB + NB</td></td<>	E3, 22	9.57	2.81	38.59	0.25	85.26	1.08	1108.71	NS + KB + NB
240.6412.8027.530.517.853.001828.71KS+KB251.2112.1027.920.6014.523.431784.19KS+KB261.5511.6428.100.6518.473.701764.66KS+KB272.3410.5728.570.7027.323.901724.33KS+KB283.828.7029.830.7342.763.911625.70Gla+KB294.967.2930.920.7453.653.811547.46Gla+KB307.065.0533.650.7470.393.531360.14Gla+KB318.124.2735.750.7376.363.271226.98Gla+KB3310.880.3037.820.3598.411.531160.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.2986.681.251094.61NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NB389.662.8138.870.2685.411.081092.65NS+NB408.820.4117.168.6097.35	A, 23	0.00	13.77	27.38	0.46	0.00	2.71	1839.64	KS+KB
251.2112.1027.920.6014.523.431784.19KS+KB261.5511.6428.100.6518.473.701764.66KS+KB272.3410.5728.570.7027.323.901724.33KS+KB283.828.7029.830.7342.763.911625.70Cla+KB294.967.2930.920.7453.653.811547.46Cla+KB307.065.0533.650.7470.393.531360.14Cla+KB318.124.2735.750.7376.363.27122.698Cla+KB3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3292.441.371149.34NS+NB3610.281.4338.120.3292.441.371149.34NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NB340.8416.518.5494.3946.271898.18S10+NS408.820.4117.168.6097.3545.46183.167S10+NS418.340.8416.518.5494.39	24	0.64	12.80	27.53	0.51	7.85	3.00	1828.71	KS+KB
261.5511.6428.100.6518.473.701764.66KS+KB272.3410.5728.570.7027.323.901724.33KS+KB283.828.7029.830.7342.763.911625.70Gla+KB294.967.2930.920.7453.653.811547.46Gla+KB307.065.0533.650.7470.393.531360.14Gla+KB318.124.2735.750.7376.363.271226.98Gla+KB3310.880.0037.700.38100.001.661176.95NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NB408.820.4117.168.6097.3545.461831.67S10+NS418.440.841.6518.5492.4546.911905.12S10+NS428.151.1316.268.6492.4546.911905.12S10+NS447.490.841.6518.54 <td< td=""><td>25</td><td>1.21</td><td>12.10</td><td>27.92</td><td>0.60</td><td>14.52</td><td>3.43</td><td>1784.19</td><td>KS+KB</td></td<>	25	1.21	12.10	27.92	0.60	14.52	3.43	1784.19	KS+KB
272.3410.5728.570.7027.323.901724.33KS+KB283.828.7029.830.7342.763.911625.70Gla+KB294.967.2930.920.7453.653.811547.46Gla+KB307.665.0533.650.7470.393.53160.14Gla+KB318.124.2735.750.7376.363.271226.98Gla+KBC, 3211.030.0037.700.38100.001.661176.95NS+NB3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.770.2685.411.081092.65N1-NS408.820.4117.168.6097.3545.461831.67S10+NS418.340.8416.518.5494.3946.271898.18S10+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.671.538.84 <t< td=""><td>26</td><td>1.55</td><td>11.64</td><td>28.10</td><td>0.65</td><td>18.47</td><td>3.70</td><td>1764.66</td><td>KS+KB</td></t<>	26	1.55	11.64	28.10	0.65	18.47	3.70	1764.66	KS+KB
283.828.7029.830.7342.763.911625.70Gla+KB294.967.2930.920.7453.653.811547.46Gla+KB307.065.0533.650.7470.393.531360.14Gla+KB318.124.2735.750.7376.363.271226.98Gla+KBc, 3211.030.0037.700.38100.001.661176.95NS+NB3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.08192.055S10+NS408.820.4117.168.6097.3545.461831.67S10+NS418.340.8416.518.5494.3946.271898.18S10+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.6716.538.8889.1047.211838.27S10+NS447.492.1315.898.70 <td>27</td> <td>2.34</td> <td>10.57</td> <td>28.57</td> <td>0.70</td> <td>27.32</td> <td>3.90</td> <td>1724.33</td> <td>KS+KB</td>	27	2.34	10.57	28.57	0.70	27.32	3.90	1724.33	KS+KB
294.967.2930.920.7453.653.811547.46Gla+KB307.065.0533.650.7470.393.531360.14Gla+KB318.124.2735.750.7376.363.271226.98Gla+KBC, 3211.030.0037.700.38100.001.661176.95NS+NB3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NB408.820.4117.168.6097.3545.461831.67S10+NS418.340.8416.518.5494.3946.271898.18S10+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.6716.538.8889.1047.211838.27S10+NS447.492.1315.898.7085.6647.671921.08S10+NS4445.552.5416.259.13 </td <td>28</td> <td>3.82</td> <td>8.70</td> <td>29.83</td> <td>0.73</td> <td>42.76</td> <td>3.91</td> <td>1625.70</td> <td>Gla+KB</td>	28	3.82	8.70	29.83	0.73	42.76	3.91	1625.70	Gla+KB
307.065.0533.650.7470.393.531360.14Gla+KB318.124.2735.750.7376.363.271226.98Gla+KBC, 3211.030.0037.700.38100.001.661176.95NS+NB3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NB408.820.4117.168.6097.3545.461831.67S10+NS418.340.8416.518.5494.3946.271898.18S10+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.6716.538.8889.1047.211838.27S10+NS447.492.1315.898.7085.6647.671921.08S10+NSE4, 457.552.5416.259.1383.4748.321819.32S10+NS+Gla	29	4.96	7.29	30.92	0.74	53.65	3.81	1547.46	Gla+KB
318.124.2735.750.7376.363.271226.98Gla+KBC, 3211.030.0037.700.38100.001.661176.95NS+NB3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NB408.820.4117.168.6097.3545.461831.67S10+NS418.340.8416.518.5494.3946.271898.18S10+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.6716.538.8889.1047.211838.27S10+NS447.492.1315.898.7085.6647.671921.08S10+NSE4, 457.552.5416.259.1383.4748.321819.32S10+NS+Gla	30	7.06	5.05	33.65	0.74	70.39	3.53	1360.14	Gla+KB
C, 3211.030.0037.700.38100.001.661176.95NS+NB3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NB408.820.4117.168.6097.3545.461831.67S10+NS418.340.8416.518.5494.3946.271898.18S10+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.6716.538.8889.1047.211838.27S10+NS447.492.1315.898.7085.6647.671921.08S10+NSE4, 457.552.5416.259.1383.4748.321819.32S10+NS+Gla	31	8.12	4.27	35.75	0.73	76.36	3.27	1226.98	Gla+KB
3310.880.3037.820.3598.411.531169.25NS+NB3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NBG, 398.780.0016.908.19100.0044.631920.55\$10+NS408.820.4117.168.6097.3545.461831.67\$10+NS418.340.8416.518.5494.3946.271898.18\$10+NS428.151.1316.268.6492.4546.911905.12\$10+NS438.031.6716.538.8889.1047.211838.27\$10+NS447.492.1315.898.7085.6647.67192.108\$10+NSE4, 457.552.5416.259.1383.4748.321819.32\$10+NS+Gla	C, 32	11.03	0.00	37.70	0.38	100.00	1.66	1176.95	NS+NB
3410.720.6237.930.3496.721.491160.46NS+NB3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NBG, 398.780.0016.908.19100.0044.631920.55\$10+NS408.820.4117.168.6097.3545.461831.67\$10+NS418.340.8416.518.5494.3946.271898.18\$10+NS428.151.1316.268.6492.4546.911905.12\$10+NS438.031.6716.538.8889.1047.211838.27\$10+NS447.492.1315.898.7085.6647.67192.108\$10+NSE4, 457.552.5416.259.1383.4748.321819.32\$10+NS+Gla	33	10.88	0.30	37.82	0.35	98.41	1.53	1169.25	NS+NB
3510.450.9837.740.3494.791.471169.43NS+NB3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NBG, 398.780.0016.908.19100.0044.631920.55510+NS408.820.4117.168.6097.3545.461831.67510+NS418.340.8416.518.5494.3946.271898.18510+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.6716.538.8889.1047.211838.27S10+NS447.492.1315.898.7085.6647.671921.08S10+NS+GlaE4, 457.552.5416.259.1383.4748.321819.32S10+NS+Gla	34	10.72	0.62	37.93	0.34	96.72	1.49	1160.46	NS+NB
3610.281.4338.120.3292.441.371143.94NS+NB379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NBG, 398.780.0016.908.19100.0044.631920.55\$10+NS408.820.4117.168.6097.3545.461831.67\$10+NS418.340.8416.518.5494.3946.271898.18\$10+NS428.151.1316.268.6492.4546.911905.12\$10+NS438.031.6716.538.8889.1047.211838.27\$10+NS447.492.1315.898.7085.6647.671921.08\$10+NS+GlaE4, 457.552.5416.259.1383.4748.321819.32\$10+NS+Gla	35	10.45	0.98	37.74	0.34	94.79	1.47	1169.43	NS+NB
379.802.5638.820.2986.681.251094.61NS+NB389.662.8138.870.2685.411.081092.65NS+NBG, 398.780.0016.908.19100.0044.631920.55S10+NS408.820.4117.168.6097.3545.461831.67S10+NS418.340.8416.518.5494.3946.271898.18S10+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.6716.538.8889.1047.211838.27S10+NS447.492.1315.898.7085.6647.671921.08S10+NSE4, 457.552.5416.259.1383.4748.321819.32S10+NS+Gla	36	10.28	1.43	38.12	0.32	92.44	1.37	1143.94	NS+NB
38 9.66 2.81 38.87 0.26 85.41 1.08 1092.65 NS+NB G, 39 8.78 0.00 16.90 8.19 100.00 44.63 1920.55 \$10+NS 40 8.82 0.41 17.16 8.60 97.35 45.46 1831.67 \$10+NS 41 8.34 0.84 16.51 8.54 94.39 46.27 1898.18 \$10+NS 42 8.15 1.13 16.26 8.64 92.45 46.91 1905.12 \$10+NS 43 8.03 1.67 16.53 8.88 89.10 47.21 1838.27 \$10+NS 44 7.49 2.13 15.89 8.70 85.66 47.67 1921.08 \$10+NS E4, 45 7.55 2.54 16.25 9.13 83.47 48.32 1819.32 \$10+NS+Gla	37	9.80	2.56	38.82	0.29	86.68	1.25	1094.61	NS+NB
G, 398.780.0016.908.19100.0044.631920.55S10+NS408.820.4117.168.6097.3545.461831.67S10+NS418.340.8416.518.5494.3946.271898.18S10+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.6716.538.8889.1047.211838.27S10+NS447.492.1315.898.7085.6647.671921.08S10+NS+GlaE4, 457.552.5416.259.1383.4748.321819.32S10+NS+Gla	38	9.66	2.81	38.87	0.26	85.41	1.08	1092.65	NS+NB
408.820.4117.168.6097.3545.461831.67S10+NS418.340.8416.518.5494.3946.271898.18S10+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.6716.538.8889.1047.211838.27S10+NS447.492.1315.898.7085.6647.671921.08S10+NS+GlaE4, 457.552.5416.259.1383.4748.321819.32S10+NS+Gla	G, 39	8.78	0.00	16.90	8.19	100.00	44.63	1920.55	S10+NS
418.340.8416.518.5494.3946.271898.18S10+NS428.151.1316.268.6492.4546.911905.12S10+NS438.031.6716.538.8889.1047.211838.27S10+NS447.492.1315.898.7085.6647.671921.08S10+NSE4, 457.552.5416.259.1383.4748.321819.32S10+NS+Gla	40	8.82	0.41	17.16	8.60	97.35	45.46	1831.67	S10+NS
428.151.1316.268.6492.4546.911905.12\$10+NS438.031.6716.538.8889.1047.211838.27\$10+NS447.492.1315.898.7085.6647.671921.08\$10+NSE4, 457.552.5416.259.1383.4748.321819.32\$10+NS+Gla	41	8.34	0.84	16.51	8.54	94.39	46.27	1898.18	S10+NS
43 8.03 1.67 16.53 8.88 89.10 47.21 1838.27 S10+NS 44 7.49 2.13 15.89 8.70 85.66 47.67 1921.08 S10+NS E4, 45 7.55 2.54 16.25 9.13 83.47 48.32 1819.32 S10+NS+Gla	42	8.15	1.13	16.26	8.64	92.45	46.91	1905.12	S10+NS
44 7.49 2.13 15.89 8.70 85.66 47.67 1921.08 S10+NS E4, 45 7.55 2.54 16.25 9.13 83.47 48.32 1819.32 S10+NS+Gla	43	8.03	1.67	16.53	8.88	89.10	47.21	1838.27	S10+NS
E4, 45 7.55 2.54 16.25 9.13 83.47 48.32 1819.32 S10+NS+Gla	44	7.49	2.13	15.89	8.70	85.66	47.67	1921.08	S10+NS
	E4, 45	7.55	2.54	16.25	9.13	83.47	48.32	1819.32	S10+NS+Gla

equilibrium composition of invariant points for its ternary subsystems, salts were prepared proportionally. The appropriate calculated quantity of salts was dissolved in distilled water. The mixtures were put into sealed glass bottles for the solubility experiments.

Then, sealed glass bottles were placed in the thermostated vibrator (HZS-H), and the temperature was maintained at (298 \pm 0.1) K. The solutions were taken out periodically to analyze the concentration of the solution. When the concentration was unchanged, the sign of equilibrium reached. This process took about 15 days. The clarification of the solutions needs about five days. After equilibrium, the liquid phases were taken out and diluted to volumetric flask for the quantitative analysis of the composition.

2.3. Analytical methods

Potassium ion (K⁺) concentration was determined using sodium tetraphenyl borate–hexadecyl trimethyl ammonium bromide titration (with a precision of 0.5 wt%). Bromide ion (Br⁻) concentrations were determined by Mohr's method using a silver nitrate standard solution (with a precision of 0.3 wt%). Sulfate ion (SO₄^{2–}) concentration was measured by a method of alizarin red S volumetry (precision: 0.5 wt%). Sodium ion (Na⁺) concentration was evaluated according to the ion charge balance.

3. Results and discussion

The experimental results of solubilities and equilibrium solids of the equilibrated solution in the quaternary system NaBr–KBr– Na₂SO₄–K₂SO₄–H₂O at 298 K are shown in Table 1. The solubilities of salts in the equilibrium solution are expressed as weight percentages *w*(*B*). The solubility diagram of the quaternary system is expressed with Jänecke dry-salt indices, where *J*(2Na⁺), *J*(2 K⁺), *J* (2Br⁻), *J*(SO₄²⁻) and *J*(H₂O) are the Jänecke indices of their corresponding salts and water, respectively, with *J*(2Na⁺) + *J*(2 K⁺)=*J* (2Br⁻)+*J*(SO₄²⁻)=100 mol. On the basis of Jänecke index values, the phase diagram was constructed, and was shown in Fig. 1 with solid lines.

The quaternary system NaBr-KBr-Na₂SO₄-K₂SO₄-H₂O at 298 K is interactive saturation systems. It consists of four ternary subsystems: (1) Na₂SO₄-K₂SO₄-H₂O, (2) NaBr-KBr-H₂O (3) NaBr-Na₂SO₄-H₂O and (4) KBr-K₂SO₄-H₂O. The ternary system Na₂SO₄-K₂SO₄–H₂O is a classical Salt-water system. For this ternary system, a lot of solubility data have been reported at a wide temperature range and the experimental and calculated data is accurate and reliable through long-term validation. In this system, the double salt Na₂SO₄ · 3K₂SO₄ was found. It consist of three univariant curves, three crystallization fields (Na₂SO₄, K₂SO₄ and Na₂SO₄ · 3K₂SO₄), and has two invariant points. The Br-bearing ternary systems NaBr-KBr-H2O, NaBr-Na2SO4-H2O and KBr-K₂SO₄–H₂O at 298 K are all simple co-saturation type. The systems NaBr-KBr-H₂O and KBr-K₂SO₄-H₂O consist of only one invariant point, two univariant curves and two crystallization regions. The NaBr-Na₂SO₄-H₂O system has two invariant points, three univariant curves, and three crystallization fields corresponding to NaBr \cdot 2H₂O, Na₂SO₄ and Na₂SO₄ \cdot 10H₂O.

The phase diagram of the quaternary system in Fig. 1 consists of six crystallization fields, nine univariant curves, and four invariant points (points E1, E2, E3 and E4). The six crystallization fields correspond to five single salts, NaBr \cdot 2H₂O, Na₂SO₄, Na₂SO₄ \cdot 10H₂O, K₂SO₄ and KBr, and one double salt, Na₂SO₄ \cdot 3K₂SO₄ (Gla). The crystallized area of aphthitalite is the largest whereas that of sodium bromide dihydrate is the smallest because of its high solubility. No soild solution has been found in

Fig.1. Equilibrium phase diagram and partial enlarged diagram of the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K.

Fig.2. X-ray diffraction photograph of the invariant point E1 of the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K [Na₂SO₄ · 3K₂SO₄+KBr+K₂SO₄].

quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K. The nine univariant curves, namely, curves AE1, BE3, CE3, DE1, FE4, GE4, E1E2, E2E3 and E2E4, are cosaturated with two salts, respectively. The X-ray diffraction photographs of the invariant

Fig.3. X-ray diffraction photograph of the invariant point E2 of the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K [Na₂SO₄ · 3K₂SO₄+KBr+Na₂SO₄].

Fig.4. X-ray diffraction photograph of the invariant point E3 of the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K [Na₂SO₄+KBr+NaBr·2H₂O].

points E1, E2, E3 and E4 in the quaternary system are given in Figs. 2–5. The saturated salts and the mass fraction composition for the four invariant points are listed below.

Invariant point E1, saturated with salts $K_2SO_4 + KBr + Na_2SO_4 \cdot 3K_2SO_4$ (Gla). The mass fraction composition of the corresponding liquid phase is $w(Na^+)=0.0258$, $w(K^+)=0.0951$, $w(Br^-)=0.2726$ and $w(SO_4^{2-})=0.0069$.

Invariant point E2, saturated with salts $Na_2SO_4 + KBr + Na_2SO_4 \cdot 3K_2SO_4$ (Gla). The mass fraction composition of the corresponding liquid phase is $w(Na^+)=0.0829$, $w(K^+)=0.0354$, $w(Br^-)=0.3499$ and $w(SO_4^{2-})=0.0062$.

Fig.6. Water contents of saturated solutions in quaternary system NaBr–KBr–Na₂SO₄– K_2 SO₄– H_2 O at 298 K.

 Table 2

 Single-salt parameters and mixing ion-interaction parameters in the solution of the quaternary system NaBr-KBr-Na₂SO₄-K₂SO₄-H₂O at 298 K.

Salt $\beta^{(0)}$ $\beta^{(1)}$ C^{ϕ} Reference sour	irce
$\begin{array}{ccccc} Na_2SO_4 & 0.018693 & 1.099405 & 0.006298 & [15] \\ K_2SO_4 & 0.055536 & 0.796385 & -0.0188 & [15] \\ NaBr & 0.1209144 & 0.0614751 & -0.00282 & [27] \\ KBr & 0.0518449 & 0.2767664 & -0.000868 & [27] \end{array}$	

Invariant point E3, saturated with salts NaBr $2H_2O$ + KBr+Na₂SO₄. The mass fraction composition of the corresponding liquid phase is $w(Na^+)=0.0957$, $w(K^+)=0.0281$, $w(Br^-)=0.3859$ and $w(SO_4^{2-})=0.0025$.

Invariant point E4, saturated with salts $Na_2SO_4 \cdot 10H_2O_+$ $Na_2SO_4 + Na_2SO_4 \cdot 3K_2SO_4$ (Gla). The mass fraction composition of the corresponding liquid phase is $w(Na^+)=0.0755$, $w(K^+)=$ 0.0254, $w(Br^-)=0.1625$ and $w(SO_4^{2-})=0.0913$.

Fig. 6 is the relevant water diagram of the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K. Fig. 6 shows that the Jänecke index values of water $J(H_2O)$ change with the Jänecke index values of Na⁺ and decrease at the univariant curves DE1, FE4 and E4E2.

Compared with the two phase diagrams of quaternary system Na⁺,K⁺//Br⁻,SO₄²⁻–H₂O at 298 K and 323 K [33,34], the result shows that the double salt all forms in the phase diagrams at two different temperatures. But the numbers of invariant points, crystallization fields, and univariant curves are different. The crystallization fields of solid solution Na2SO4 · 10H2O has disappeared at 323 K. The phase diagram at 323 K includes three invariant points, seven univariant curves, and five crystallization regions corresponding to NaBr, Na2SO4, K2SO4, KBr and $Na_2SO_4 \cdot 3K_2SO_4(Gla)$. And the shape of the each crystallization region is nearly identical. The solubility of NaBr · 2H₂O (298 K) or NaBr (323 K) is highest among the salts in this quaternary system at two temperatures. In comparison with the quaternary systems $Na^+,K^+//Cl^-,SO_4^{2-}-H_2O$ [15] and $Na^+,K^+//Br^-,SO_4^{2-}-H_2O$ at 298 K, the two phase diagrams have very similar shapes, each of them having four invariant points, nine univariant curves, and six crystallization fields. The crystallization field of the salt NaBr is apparently smaller than that of NaCl. It is also found that halide has the salting-out effect on sulfates.

Table 3

Values of Debye–Hückel constant (A[#]) and mixing ion-interaction parameters in the solution of the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K.

Parameter	$\theta_{\mathrm{Na},\mathrm{K}}$	$\theta_{\mathrm{Br,SO4}}$	$\Psi_{\rm Na,K,SO4}$	$\Psi_{\mathrm{Na},\mathrm{K},\mathrm{Br}}$	$\Psi_{\rm Na,Br,SO4}$	$\Psi_{ m K,Br,SO4}$	A^{ϕ}
Value	-0.003203	0.03	0.007253	-0.002586	-0.012	-0.0115	0.3914752
Ref.	[15]	[32]	[15]	[27]	[32]	[32]	[15]

Table 4

Stable solubility constants of salts of the quaternary system NaBr–KBr–Na₂SO₄– $\rm K_2SO_4-H_2O$ at 298 K.

Parameter	ln Ka	Reference
Na ₂ SO ₄ · 10H ₂ O Na ₂ SO ₄ K ₂ SO ₄ NaBr · 2H ₂ O KBr Na ₂ SO ₄ · 3K ₂ SO ₄ (Gla)	-2.80577 - 0.586385 -4.125243 4.643336 2.6271912 -17.059879	[15] [15] [27] [27] [15]

4. Prediction of solubility

Pitzer published a series of papers about electrolyte solution, and came up with a set of semi-empirical theory of statistical mechanics [7,8]. Using this theory, a set of expressions for the osmotic coefficients of the solution and mean activity coefficient of electrolytes in the solution has been deduced. A number of theoretical studies on salt minerals and brine system have been carried out in recent decades. Aiming at the seawater system, Harvie et al. carried out a series of research and extended the Pitzer ion-interaction model to Harvie–Weare (H–W) model, and have been

Table 5Calculated value of solution solubilities in the quaternary system NaBr-KBr-Na2SO4-K2SO4-H2O at 298 K.

No.	Composition	of liquid phase			Jänecke index	Equilibrium solids	
					$J(2Na^+)+J(2K^+)$		
	M(Na ⁺)	M(K ⁺)	$M(Br^{-})$	M(SO ₄ ²⁻)	J(2Na ⁺)	<i>J</i> (SO ₄ ²⁻)	
A', 1	0.00	5.99	5.70	0.14	0.00	4.83	KS+KB
2	0.51	5.63	5.82	0.16	8.24	5.24	KS+KB
3	1.01	5.29	5.94	0.18	16.05	5.74	KS+KB
4	1.52	4.96	6.07	0.21	23.41	6.36	KS+KB
E1′, 5	2.02	4.66	6.20	0.24	30.28	7.12	KS+KB+Gla
6	1.70	3.33	4.43	0.30	33.78	11.84	KS+Gla
7	1.52	2.75	3.55	0.36	35.60	16.97	KS+Gla
8	1.34	2.25	2.66	0.47	37.35	26.04	KS+Gla
9	1.19	1.87	1.77	0.64	38.92	41.96	KS+Gla
10	1.09	1.62	0.89	0.91	40.29	67.30	KS+Gla
11	1.07	1.53	0.30	1.16	41.19	88.66	KS+Gla
D', 12	1.08	1.51	0.00	1.29	41.67	100.00	KS+Gla
13	2.56	4.28	6.37	0.23	37.43	6.80	KB+Gla
14	3.15	3.90	6.58	0.24	44.67	6.73	KB+Gla
15	3.80	3.52	6.82	0.25	51.90	6.90	KB+Gla
16	4.53	3.14	7.11	0.28	59.05	7.35	KB+Gla
17	5.39	2.77	7.49	0.33	66.08	8.21	KB+Gla
18	6.45	2.39	7.97	0.43	72.99	9.82	KB+Gla
E2′, 19	7.98	2.01	8.69	0.65	79.88	13.07	KB+Gla+NS
B', 20	8.77	1.26	10.03	0.00	87.40	0.00	KB+NB
21	8.78	1.27	10.03	0.01	87.40	0.18	KB+NB
22	8.80	1.27	10.03	0.02	87.39	0.35	KB+NB
23	8.81	1.27	10.03	0.03	87.38	0.53	KB+NB
E3′, 24	8.83	1.27	10.03	0.04	87.38	0.71	KB + NB + NS
25	8.93	0.95	9.81	0.03	90.38	0.69	NB+NS
26	9.03	0.63	9.60	0.03	93.44	0.66	NB+NS
27	9.13	0.32	9.39	0.03	96.65	0.63	NB+NS
C', 28	9.23	0.00	9.18	0.03	100.00	0.60	NB+NS
29	9.04	1.32	10.01	0.18	87.28	3.41	KB+NS
30	9.11	1.46	9.76	0.40	86.20	7.63	KB+NS
31	8.45	1.73	9.14	0.52	82.97	10.20	KB+NS
32	7.18	1.50	6.93	0.87	82.77	20.12	Gla+NS
33	6.85	1.28	5.95	1.09	84.23	26.88	Gla+NS
34	6.69	1.16	5.23	1.31	85.17	33.45	Gla + NS
35	6.62	1.09	4.64	1.53	85.87	39.81	Gla+NS
F'. 36	4.44	1.00	0.00	2.72	81.55	100.00	Gla+S10
37	4.71	0.99	0.73	2.49	82.60	87.21	Gla+S10
38	5.12	0.98	1.46	2.32	83.93	76.08	Gla + S10
39	5.25	0.97	1.92	2.15	84.40	69.16	Gla+S10
E4'. 40	5.73	0.96	3.19	1.75	85.60	52.38	Gla+S10+NS
41	5.95	0.67	3.22	1.70	89.88	51.39	NS+S10
42	6.41	0.24	3.30	1.67	96.46	50.28	NS+S10
C/ 42	C CF	0.00	2.25	1.05	100.00	10.50	10,010

Note: NB=NaBr · 2H₂O, NS=NaSO₄, KB=KBr, KS=K₂SO₄, Gla=Na₂SO₄ · 3K₂SO₄, S10=NaSO₄ · 10H₂O

N

Fig.7. The experimental and calculated phase diagram and partial enlarged diagram of the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K. —, experimental isotherm curve; •, experimental data; \circ , calculated data .

successfully used in calculating thermodynamic properties and the solubilities of electrolytes. The H–W equations are as follows [9–11]:

$$\begin{split} \varnothing &-1 = \frac{1}{\sum_{i} m_{i}} \Biggl\{ 2 \Biggl[\frac{-A^{\varnothing} I_{2}^{3}}{1 + 1.2 I_{2}^{1}} + \sum_{i_{C}=1}^{N_{C}} \sum_{i_{A}=1}^{N_{A}} m_{c} m_{A} (B_{CA}^{\varnothing} + ZC_{CA}) + \\ &\sum_{i_{C}=1}^{N_{C}-1} \sum_{j_{C'}=i_{C}+1}^{N_{C}} m_{C} m_{C'} \Biggl(\Phi_{CC'}^{\Phi} + \sum_{i_{A}=1}^{N_{A}} m_{A} \psi_{ACC'} \Biggr) \\ &+ \sum_{i_{A}=1}^{N_{A}-1} \sum_{j_{A'}=i_{A}+1}^{N_{A}} m_{A} m_{A'} \Biggl(\Phi_{AA'}^{\Phi} + \sum_{i_{C}=1}^{N_{C}} m_{C} \psi_{AA'C} + \\ &\sum_{i_{N}=1}^{N_{N}} \sum_{i_{A}=1}^{N_{A}} m_{N} m_{A} \lambda_{NA} + \sum_{i_{N}=1}^{N_{N}} \sum_{i_{C}=1}^{N_{C}} m_{N} m_{C} \lambda_{NC} \Biggr) \Biggr] \Biggr\}$$
(1)

$$\begin{aligned} \ln \gamma_{M} &= Z_{M}^{2}F + \sum_{i_{A}=1}^{N} m_{A} (2B_{MA} + ZC_{CX}) \\ &+ \sum_{i_{C}=1}^{N_{C}} m_{C} \Biggl(2\Phi_{MC} + \sum_{i_{A}=1}^{N_{A}} m_{A}\psi_{MCA} \Biggr) \\ &+ \sum_{i_{A}=1}^{N_{A}-1} \sum_{j_{A^{'}}=i_{A}+1}^{N_{A}} m_{A}m_{A^{'}}\psi_{AA^{'}M} + |Z_{M}| \sum_{i_{C}=1}^{N_{C}} \sum_{i_{A}=1}^{N_{A}} m_{A}m_{C}C_{CA} \\ &+ \sum_{i_{N}=1}^{N_{N}} m_{N} (2\lambda_{NM}) \end{aligned}$$
(2)

$$\ln \gamma_{X} = Z_{X}^{2} + \sum_{i_{C}=1}^{N_{C}} m_{C} (2B_{CX} + ZC_{CX})$$

+
$$\sum_{i_{A}=1}^{N_{A}} m_{A} \left(2\Phi_{XA} + \sum_{i_{C}=1}^{N_{C}} m_{C}\psi_{XAC} \right) + \sum_{i_{C}=1}^{N_{C}-1} \sum_{j_{C}'}^{N_{C}} m_{C}m_{C}\psi_{CC'X}$$

+
$$|Z_{X}| \sum_{i_{C}=1}^{N_{C}} \sum_{i_{A}=1}^{N_{A}} m_{C}m_{A}C_{CA} + \sum_{i_{N}=1}^{N_{N}} m_{N} (2\lambda_{NM})$$
(3)

$$\ln \gamma_{N} = \sum_{i_{C}=1}^{N_{C}} m_{C}(2\lambda_{AC}) + \sum_{i_{A}=1}^{N_{A}} m_{A}(2\lambda_{NA})$$
(4)

In the above (Eqs. (1)–4), M, C and C' are referred to cations; X, A and A' are referred to anions; N_C , N_A and N_N refer to cations, anions and neutral molecules respectively.

Christov develop temperature variable fully parameterized solid–liquid equilibria model for two bromide quinary systems: Na– K–Mg–Ca–Br–H₂O [27–31] and Na–K–Ca–Br–SO₄–H₂O [32]. The model for binary subsystems is valid from 0 to 250 °C, and for mixed systems from 0 to 100 °C. It can provide the needed singlesalt parameters $\beta^{(0)}$, $\beta^{(1)}$, C^{ϕ} for NaBr and KBr, Pitzer mixing ioninteraction parameters $\psi_{Na,K,Br}$, $\theta_{Br,SO4}$, $\psi_{Na,Br,SO4}$, and $\psi_{K,Br,SO4}$, and stable solubility constants ln*K* of salts NaBr · 2H₂O, KBr for the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K.

Moreover, the other needed Pitzer single-salt parameters $\beta^{(0)}$, $\beta^{(1)}$, C^{ϕ} for Na₂SO₄, K₂SO₄, Pitzer mixing ion-interaction parameters $\theta_{Na,K}$, $\psi_{Na,K,SO4}$, Debye–Hückel parameter A^{ϕ} , In*Kw*(μ° /RT) H₂O(aq) and stable solubility constants In*K* of salts Na₂SO₄, Na₂SO₄ · 10H₂O, K₂SO₄ at 298 K are available using this *T*-function given in *T*-variation model by Greenberg and Moller [15]. All of the parameters used in the calculation are presented in Tables 2–4, respectively.

Based on the solubility approach of Harvie et al. for aqueous electrolyte solutions, the solubilities for phase equilibria conditions in the quaternary system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K were calculated with corresponding parameters and are listed in Table 5. On the Basis of the experimental and calculated solubilities, the phase diagram of the quaternary system was plotted and given in Fig. 7. The calculations data and experiments data were compared, and the results were shown in Table 6. It showed that the calculated values have a good agreement with the experimental data. And it also means that reasonable parameters can be used in aqueous salt system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K.

5. Conclusions

The phase equilibrium of the quaternary system NaBr–KBr– Na₂SO₄–K₂SO₄–H₂O was studied at 298 K by isothermal solution saturation method. It was found that the quaternary system contains the double salt Na₂SO₄ · 3K₂SO₄ (Gla). The phase diagram of

Table 6

Calculated and partly experimental solubilities in the quaternary system NaBr-KBr-Na₂SO₄-H₂SO₄-H₂O system at 298 K.

No.	Composition of liquid phase				Jänecke index		Equilibrium solids	
					$J(2Na^+)+J(2K^+)=100 \text{ mol}$			
	w(Na ⁺)	<i>w</i> (K ⁺)	<i>w</i> (Br ⁻)	$w(\mathrm{SO_4}^{2-})$	J(2Na ⁺)	<i>J</i> (SO ₄ ²⁻)		
Experimental A	0.00	13.77	27.38	0.46	0.00	2.71	KS+KB	
Calculated A'	0.00	13.75	26.74	0.82	0.00	4.83		
Experimental B	9.80	2.40	38.96	0.00	87.43	0.00	KB+NB	
Calculated B'	9.82	2.41	39.06	0.00	87.40	0.00		
Experimental C	11.03	0.00	37.70	0.38	100.00	1.66	NB+NS	
Calculated C'	10.90	0.00	37.64	0.14	100.00	0.60		
Experimental D	2.13	4.59	0.00	10.08	44.09	100.00	KS+Gla	
Calculated D'	2.05	4.89	0.00	10.29	41.67	100.00		
Experimental F	7.26	2.75	0.00	18.55	81.78	100.00	Gla+S10	
Calculated F'	7.28	2.80	0.00	18.64	81.55	100.00		
Experimental G	8.78	0.00	16.90	8.19	100.00	44.63	NS+S10	
Calculated G'	8.84	0.00	17.16	8.16	100.00	49.59		
Experimental E1	2.58	9.51	27.26	0.69	31.60	4.02	KS+KB+Gla	
Calculated E1'	2.66	10.42	28.37	1.31	30.28	7.12		
Experimental E2	8.29	3.54	34.99	0.62	79.92	2.87	KB+Gla+NS	
Calculated E2'	5.38	7.15	30.97	1.41	79.88	13.07		
Experimental E3	9.57	2.81	38.59	0.25	85.26	1.08	KB + NB + NS	
Calculated E3'	9.83	2.41	39.02	0.05	87.38	0.71		
Experimental E4	7.55	2.54	16.25	9.13	83.47	48.32	Gla + NS + S10	
Calculated E4'	9.31	2.23	14.14	13.69	85.60	52.38		

Note: NB=NaBr · 2H₂O, NS=NaSO₄, KB=KBr, KS=K₂SO₄, Gla=Na₂SO₄ · 3K₂SO₄, S10=NaSO₄ · 10H₂O.

the system consists of four invariant points, nine univariant curves, and six crystallization fields: NaBr $2H_2O$, Na₂SO₄, Na₂SO₄, $10H_2O$, K₂SO₄ and KBr, and Na₂SO₄ $3K_2SO_4$ (Gla). A model, based on the Pitzer approach for quaternary system under study has been developed. The model, with binary and mixing interaction parameters taken from the literature and adapted to standard temperature, has been used to calculate the solubilities in the system NaBr–KBr–Na₂SO₄–K₂SO₄–H₂O at 298 K. The calculated values are basically in agreement with experiment data.

Acknowledgment

This project was supported by open the National Natural Science Foundation of China (Grant no. 41373062, U1407108), the Specialized Research Fund (20125122110015) for the Doctoral Program of Higher Education of China, scientific research and innovation team in Universities of Sichuan Provincial Department of Education (15TD0009) and the youth science and technology innovation team of Sichuan Province, China (2013TD0005).

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.calphad.2016.06. 005.

References

- Y.T. Lin, Resource advantages of the underground brines of sichuan basin and the outlook of their comprehensive exploitation, J. Salt Lake Res. 14 (2006) 1–8 (in Chinese).
- [2] R.Z. Cui, S.H. Sang, Q.Z. Liu, P. Wang, Measurements of the solid–liquid equilibria in the quaternary systems KBr–K₂SO₄–K₂B₄O₇–H₂O and NaBr–Na₂SO₄– Na₂B₄O₇–H₂O at 298 K, J Chem. Eng. Data 59 (7) (2014) 2252–2257.
- [3] S.H. Sang, H. Zhang, S.Y. Zhong, M.L. Sun, Experimental study of the solubilities of salts in the systems Na₂B₄O₇-NaBr-H₂O and Na₂B₄O₇-Na₂SO₄-NaBr-H₂O at 323 K, Fluid Phase Equilib. 361 (2014) 171–174.
- [4] H.Y. Ning, S.H. Sang, D. Wang, X.X. Zeng, A study on equilibria of the

quaternary system Na₂B₄O₇–NaBr–Na₂SO₄–H₂O at 348 K, Chem. Eng. (China) 4 (2012) 27–30 (in Chinese).

- [5] S.H. Sang, X. Zhang, X.X. Zeng, D. Wang, Solid-liquid equilibria in the quinary Na⁺, K⁺//Cl⁻, SO₄ ²⁻, B₄O₇²⁻-H₂O system at 298 K, Chin. J. Chem. 29 (2011) 1285–1289.
- [6] S.H. Sang, X. Zhang, J.J. Zhang, Solid–liquid equilibria in the quinary Na⁺, K⁺// Cl⁻, SO₄ ²⁻, $B_4O_7^{2-}$ –H2O system at 323 K, J. Chem. Eng. Data 57 (2012) 907–910.
- [7] K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem. 77 (2) (1973) 268–277.
- [8] K.S. Pitzer, G. Mayorga, Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem. 77 (19) (1973) 2300–2308.
- [9] C.E. Harvie, J.H. Weare, The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO₄-H₂O system from zero to high concentration 25 °C, Geochim. Cosmochim. Acta 44 (1980) 981–997.
- [10] C.E. Harvie, H.P. Eugster, J.H. Weare, Mineral equilibria in the six-component seawater system, Na-K-Mg-Ca-SO₄-Cl-H₂O at 25 °C. II: Compositions of the saturated solutions, Geochim. Cosmochim. Acta 46 (1982) 1603–1618.
- [11] C.E. Harvie, N. Moller, J.H. Weare, The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₂-H₂O system from zero to high concentration at 25 °C, Geochim. Cosmochim. Acta 48 (1984) 723–751.
- [12] H.T. Kim, W.J. Frederick, Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters, J. Chem. Eng. Data 33 (2) (1988) 177–184.
- [13] H.T. Kim, W.J. Frederick, Evaluation of Pitzer ion interaction parameters of aqueous mixed electrolyte solutions at 25 °C. 2. Ternary mixing parameters, J. Chem. Eng. Data 33 (3) (1988) 278–283.
- [14] N. Moller, The Prediction of mineral solubilities in natural water: a chemical model for the Na-Ca-Cl-SO₄-H₂O system to high temperatures and concentrations, Geochim. Cosmochim. Acta 52 (1988) 821–837.
- [15] J.P. Greenberg, N. Moller, The Prediction of mineral solubilities in natural water: a chemical equilibrium model for the Na–K–Ca–Cl–SO₄–H₂O system to high concentration from 0 to 250 °C, Geochim. Cosmochim. Acta 53 (1989) 2503–2518.
- [16] C. Christov, N. Moller, A chemical equilibrium model of solution behavior and solubility in the H–Na–K–Ca–OH–Cl–HSO₄–SO₄–H₂O system to high concentration and temperature, Geochim. Cosmochim. Acta 68 (2004) 3717–3739.
- [17] C. Balarew, C. Christov, Investigation on the MeBr–MgBr₂–H₂O (Me=K, NH₄, Rb, Cs) systems at 50 °C, Compt. Rend. Acad. Bulg. Sci. 45 (1992) 49–52.
- [18] C. Balarew, C. Christov, S. Petrenko, V. Valyashko, Thermodynamics of formation of carnallite type double salts, J. Solut. Chem. 22 (1993) 173–181.
- [19] C. Christov, C. Balarew, V. Valyashko, S. Petrenko, Investigation of the aqueous lithium and magnesium halide systems, J. Solut. Chem. 23 (1994) 595–604.
- [20] C. Christov, S. Petrenko, C. Balarew, V. Valyashko, Thermodynamic simulation of four component carnallite type systems, Monatshefte fuer Chem. 125 (1994) 1371-1382.
- [21] C. Christov, Thermodynamic study of (b1LiBr+b2MgBr₂)(aq), where b denotes molality, at the temperature 348.15 K, J. Chem. Thermodyn. 27 (1995) 1267–1273.

- [22] C. Christov, C. Balarew, Effect of temperature on the solubility diagrams of carnallite type double salts, J. Solut. Chem. 24 (1995) 1171–1182.
- [23] C. Christov, Thermodynamics of the aqueous sodium and magnesium bromide system at the temperatures 273.15 K and 298.15 K, Calphad 20 (1996) 501–509.
- [24] C. Christov, A simplified model for calculation of the Gibbs energy of mixing in crystals: thermodynamic theory, restrictions and applicability, Collect. Czechoslov, Chem. Commun. 61 (1996) 1585–1599.
- [25] C. Christov, Thermodynamics of formation of double salts and solid solutions from aqueous solutions, J. Chem. Thermodyn. 37 (2005) 1036–1060.
- [26] C. Christov, S. Velikova, K. Ivanova, Study of (m1LiX+m2CaX₂)(aq) where m denotes molality and X denotes Cl or Br, at the temperature 298.15 K, J. Chem. Thermodyn. 32 (2000) 1505–1512.
- [27] C. Christov, An isopiestic study of aqueous NaBr and KBr at 50°C: Chemical equilibrium model of solution behavior and solubility in the NaBr-H₂O, KBr-H₂O and Na-K-Br-H₂O systems to high concentration and temperature, Geochim. Cosmochim. Acta 71 (2007) 3557–3569.
- [28] C. Christov, Isopiestic investigation of the osmotic coefficients of aqueous CaBr₂ and study of bromide salt solubility in the NaBr–CaBr₂–H₂O system at 50°C: Thermodynamic model of solution behavior and solid–liquid equilibria in the CaBr₂–H₂O, and NaBr–CaBr₂–H₂O systems to high concentration and temperature, Calphad 35 (2011) 42–53.
- [29] C. Christov, Isopiestic investigation of the osmotic coefficients of MgBr₂(aq)

and study of bromide salts solubility in the $(m_1KBr+m_2MgBr_2)(aq)$ system at T=323.15 K. Thermodynamic model of solution behaviour and (solid + liquid) equilibria in the $MgBr_2(aq)$, and $(m_1KBr+m_2MgBr_2)(aq)$ systems to high concentration and temperature, J. Chem. Thermodyn. 43 (2011) 344–353.

- [30] C. Christov, Study of bromide salts solubility in the (m₁NaBr + m₂MgBr₂)(aq) system at T=323.15 K, Thermodynamic model of solution behavior and solid-liquid equilibria in the (Na+K+Mg+Br+H₂O) system to high concentration and temperature, J. Chem. Thermodyn. 47 (2012) 335–340.
- [31] C. Christov, Study of bromide salts solubility in the (m₁KBr+m₂CaBr₂)(aq) system at T=323.15 K. Thermodynamic model of solution behaviour and (solid+liquid) equilibria in the ternaries (m₁KBr + m₂CaBr₂)(aq), and (m₁MgBr₂+m₂CaBr₂)(aq), and in the quinary (Na+K+Mg+Ca+Br+H₂O) systems to high concentration and temperature, J. Chem. Thermodyn. 55 (2012) 7–22.
- [32] C. Christov, Temperature variable chemical model of bromide-sulfate solution interaction parameters and solid-liquid equilibria in the Na-K-Ca-Br-SO₄-H₂O system, Calphad 36 (2012) 71–81.
- [33] S.H. Sang, M.L. Sun, H. Li, X. Zhang, K.J. Zhang, A study on equilibria of the quaternary system Na⁺,K⁺//Br⁻,SO₄^{2–}–H₂O at 323 K, Chin. J. Inorg. Chem. 27 (2011) 845–849 (in Chinese).
- [34] X.X. Zeng, S.H. Sang, D. Wang, J.J. Zhang, The theoretical calculations of phase equilibrium in the interactive quaternary system Na⁺,K⁺//Br⁻,SO₄²⁻–H₂O at 323 K, Chem. Eng. 40 (2012) 32–35 (in Chinese).