Optical Materials 42 (2015) 204-209

Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Concentration quenching, surface and spectral analyses of SrF₂:Pr³⁺ prepared by different synthesis techniques

M.Y.A. Yagoub, H.C. Swart, E. Coetsee*

Department of Physics, University of the Free State, PO Box 339, Bloemfontein ZA9300, South Africa

ARTICLE INFO

Article history: Received 4 September 2014 Received in revised form 10 January 2015 Accepted 12 January 2015 Available online 7 February 2015

Keywords: SrF₂:Pr³⁺ Concentration quenching XPS PL

ABSTRACT

 Pr^{3+} doped strontium fluoride (SrF₂) was prepared by hydrothermal and combustion methods. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) spectroscopy. XRD patterns indicated that the samples were completely crystallized with a pure face-centred cubic (space group: Fm3m) structure. SEM images showed different morphologies which is an indication that the morphology of the SrF₂:Pr³⁺ phosphor strongly depends on the synthesis procedure. Both the SrF₂:Pr³⁺ samples exhibit blue-red emission centred at 488 nm under a 439 nm excitation wavelength (λ_{exc}) at room temperature. The emission intensity of Pr³⁺ was also found to be dependent on the synthesis procedure. The blue-red emission has decreased with an increase in the Pr³⁺ concentration. The optimum Pr³⁺ doping level for maximum emission intensity was 0.4 and 0.2 mol% for the hydrothermal and combustion samples, respectively. The reduction in the intensity for higher concentrations was found to be due to dipole-dipole interaction induced concentration quenching effects.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

 Pr^{3*} is an interesting ion because it has multiple transitions that allows for detailed studies of both radiative and non-radiative mechanisms. Pr^{3*} doped materials have been extensively investigated due to its potential use in a variety of applications [1–5]. For phosphor applications, the 4f–4f transitions are the most relevant, especially the ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ red emission from Pr^{3*} doped oxide materials [6,7]. Recently, the Pr^{3*} ion was found to be a promising co-doped ion in the lanthanide-based luminescent materials to be used for quantum cutting with the Yb ion, which can be used to enhance the solar cell efficiency [1,8]. Quantum cutting with Pr^{3*} requires a host material with a lower vibrational energy. Strontium fluoride (SrF₂) has very small cut-off phonon energy (~350 cm⁻¹) and was found to be a good host for the quantum cutting application [1,8].

The SrF₂:Pr³⁺ system has been investigated by several researchers [5,9,10] and the majority reported the photon emission cascade and energy transfer mechanism in SrF₂ doped with Pr³⁺ ions (with the main focus on the 4fⁿ-4fⁿ⁻¹5d emission). The 4f-4f transitions have also been studied, but most of these results have been devoted to the red emission from Pr³⁺ doped oxide materials [6,7,11]. On

* Corresponding author. *E-mail address:* Coetseee@ufs.ac.za (E. Coetsee). the other hand, it has been shown that the probability of the multi-phonon relaxation between ${}^{3}P_{0}$ and ${}^{1}D_{2}$ levels of Pr^{3+} significantly decreases as the phonon energy of the host decreased [12]. It has also been observed that the emission intensity of the ${}^{3}P_{0}$ state of the Pr^{3+} doped host with a small phonon energy decreased with increasing the Pr^{3+} concentration. This was attributed to cross-relaxation processes [12–15]. This behavior normally occurs at the smaller average interionic distances between the Pr^{3+} ions.

Most investigations on the concentration quenching of Pr³⁺ doped crystals have been studied in oxide hosts. The different pathways by which cross-relaxation can take place makes Pr³⁺ a challenging ion to study. The low phonon energy of the SrF₂ host may play a key role on the optical properties of the dopant ion. Furthermore, the emission intensities of lanthanide ions in a host were found to be strongly dependent on the condition of the synthesis procedure [8]. This was observed on Pr³⁺ co-doped Yb³⁺ in SrF₂ where the concentration quenching of both ions at small concentrations reduced the near infrared emission intensity and prevented more quantitative assessment of the quantum cutting efficiency. The SrF₂:Pr, Yb quantum cutting samples were synthesised by solid state reaction [8]. It is therefore quite meaningful to study the effect of different synthesis techniques on the concentration quenching of Pr^{3+} in SrF_2 phosphor. In this paper, the surface and spectral investigation of Pr³⁺ doped SrF₂ phosphor powders prepared by using both the hydrothermal and combustion methods

are studied. The concentration quenching of Pr³⁺ for both methods was investigated.

2. Experimental

Cubic SrF₂ nanocrystals doped with Pr^{3+} were prepared using hydrothermal and combustion synthesis procedures, as previously described [16,17]. For the hydrothermal synthesis, analytical grade of Sr(NO₃)₂, Pr(NO₃)₃·6H₂O, NH₄F, sodium oleate, oleic acid and ethanol were used without further purification. For a typical synthesis of SrF₂:Pr³⁺, ethanol, sodium oleate and oleic acid were added simultaneously to an aqueous solution containing Sr(NO₃)₂, NH₄F and Pr(NO₃)₃·6H₂O. After 10 min of stirring the milky colloidal solution was transferred to a 125 ml autoclave lined with Teflon and heated at 180 °C for 24 h. The product was collected by centrifugal and washed with water and ethanol. Finally, the product was dried for 24 h in an oven at 80 °C. The as-prepared SrF₂:Pr³⁺ samples did not emit, therefore, they were sintered for 2 h at 450 °C.

In the combustion synthesis, an aqueous solution of NH₄F was added drop wise to a mixture of Sr(NO₃)₂, Pr(NO₃)₃·6H₂O and urea, which was used as fuel. The milky solution was collected after thoroughly stirring. Then, the obtained solution was transferred into a porcelain crucible and placed in a furnace at 500 °C until the ignition occurred. Finally, the as-prepared powder was sintered for 2 h at 700 °C.

The phosphors were characterized by X-ray diffraction (XRD) (Bruker Advance D8 diffractometer with Cu Ka radiation $(\lambda = 0.154 \text{ nm}))$ to identify the crystalline structure of the powder. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra were collected using a Cary Eclipse fluorescence spectrophotometer and Horiba scientific (Fluorolog-3) spectrofluorometer equipped with a xenon lamp. The surface morphology was recorded using a Shimadzu Supers-can scanning electron microscope (SEM) model ZU SSX-550. High resolution X-ray photoelectron spectroscopy (XPS) was obtained with a PHI 5000 Versaprobe system. A low energy Ar⁺ ion gun and low energy neutralizer electron gun were used to minimize charging on the surface. A 100 µm diameter monochromatic Al Ka X-ray beam (hv = 1486.6 eV) generated by a 25 W, 15 kV electron beam was used to analyze the different binding energy peaks. The pass energy was set to 11 eV giving an analyzer resolution ≤ 0.5 eV. Multipack version 8.2 software was utilized to analyze the spectra to identify the chemical compounds and their electronic states using Gaussian-Lorentz fits. All measurements were performed at room temperature.

3. Results and discussion

Fig. 1(a) depicts the XRD patterns of SrF₂:Pr³⁺ prepared by the hydrothermal and combustion method as well as the standard data for SrF₂ (card No. 00-086-2418). The strong diffraction peaks indicate that the samples powder is fully crystallized (face-centred cubic with space group: Fm3m). The patterns for doped samples with Pr^{3+} are similar to those from the pure SrF_2 matrix. This indicates that there is no obvious influence of the dopants on the crystalline structure of the host. It can, however, be noticed that doping of Pr³⁺ in both methods causes a slight shift to a higher angle with comparison to the standard data (Fig. 1(a)). This can be attributed to the radius difference between Pr^{3+} (0.099 nm) and Sr²⁺ (0.126 nm) ions, which confirms that Pr³⁺ ions are incorporated into the SrF₂ lattice. The sintering temperature of the as-prepared hydrothermal samples caused a slight variation in the XRD intensities. The reason might be that, the orientation growth of the particles occurred in certain directions. The calculated SrF_2 lattice parameter is (5.778 ± 0.0025) Å and

Fig. 1. (a) XRD patterns of $SrF_2:Pr^{3+}$ phosphors; (b) Williamson-Hall plots for Pr^{3+} doped SrF_2 samples for both the hydrothermal and combustion methods.

 (5.775 ± 0.0054) Å for the samples prepared by the combustion and hydrothermal methods, respectively. These results agreed well with reported values [17].

Fig. 1(b) shows Williamson-Hall plots for the combustion and hydrothermal samples, where the peak broadening is dependent on both crystallite size and microstrain. The Williamson-Hall equation is given by $\beta \cos \theta = K\lambda/\mathbf{S} + 4\varepsilon \sin \theta$, where λ is the wavelength of the X-rays (0.154 nm) and β is the full-width at half maximum of the X-ray peak at the Bragg angle θ , K is a shape factor taken as 0.9, **S** is the crystallite size and ε is the microstrain [18]. The slope of this equation is equal to the microstrain and the crystallite size can be calculated from the intercept ($K\lambda/S$). The microstrain of both the hydrothermal and combustion samples has values approximately of 0.0012 (0.12%) and 0.0017 (0.17%), respectively, showing only very small amount of microstrain in this produced materials. The bigger strain was produced by combustion synthesis, which might be true as the combustion technique requires a higher temperature. The estimated average crystallite size (**S**) of the particles was calculated from both the slope of the William-Hall equation and from the well-known Debye-Scherrer's equation [19]. These are tabulated in Table 1. This shows that the hydrothermal method produces a smaller particle size.

SEM images were obtained in order to investigate the surface morphology of the synthesized phosphors. Fig. 2 represents the SEM images that were taken from the powders that were prepared by the different synthesis methods ((a) combustion and (b)

Table 1

The estimated average crystallite size (S) of the particles using the William–Hall and the well-known Debye–Scherrer's equations.

	S using Deby-Scherrer's equation (nm)	S using William–Hall equation (nm)
Hydrothermal	37-41	36
Combustion	56-62	69

hydrothermal). The results indicate different types of morphology. The combustion synthesis produced large number of particles and voids, which may be due to the high temperature reaction during the combustion process. In hydrothermal synthesis fluffy type morphology was formed. These results suggested that the synthesis procedure strongly change the morphology of the SrF_2 : Pr^{3+} phosphor.

XPS measurements have been done in order to investigate the chemical, composition and bonding state of the SrF₂:Pr³⁺ phosphors. There was no difference observed in the XPS spectra of the two synthesis methods. Fig. 3 shows the peak fits for the (a) Sr 3d, (b) F 1s and (c) Pr 3d high resolution XPS peaks and (d) the survey scan for SrF₂:Pr³⁺. The results confirmed the presence of Sr, F, and Pr to their corresponding binding energies. In addition C and O were also observed. The C contamination is attributed to adventitious hydrocarbons which are known to be always present [20]. In a fluoride compound oxygen is considered to be a common impurity [21]. In fact the presence of the O in the sample did not change the structure of the sample (see Fig. 1(a)). Therefore, the O contamination was due to adventitious impurity species in the surface rather than oxygen impurity in the SrF₂ matrix. During the peak fit procedure, the C 1s peak at 284.8 eV was taken as a reference for all charge shift corrections. This is done because the C 1s peak resulted from hydrocarbon contamination and its binding energy generally remains constant, irrespective to the chemical state of the sample. In the peak fit procedure, all the Gaussian percentages were assumed to have a combined Gaussian-Lorentzian shape. The high resolution XPS peak for the Sr 3d showed two individual peaks. These two peaks are assigned to Sr 3d in SrF₂ that originate from the spin-orbit splitting $3d_{5/2}$ (133.52 eV) and $3d_{3/2}$ (135.30 eV), while the F 1s peak is situated at 684.67 eV. The Pr $3d_{5/2}$ signal was comparatively low, which is due to a very low doping concentration of Pr. The high resolution XPS for Pr 3d_{5/2} peak consists of two individual peaks, which are assigned to the Pr^{3+} peak in SrF_2 : Pr^{3+} and a satellite peak that is always present in the Pr 3d spectra [22,23]. These results not only approved the formation of the SrF₂ matrix, but also confirm the presence of the Pr dopant in the material.

Fig. 4(a)-(c) shows the excitation and emission spectra of the SrF_2 phosphor doped with Pr^{3+} ions that were prepared by the combustion and the hydrothermal methods. The extra charge of Pr³⁺ doped SrF₂ was compensated locally by F⁻ ions. All observed excitation and emission bands are similar in both synthesis methods. The excitation spectrum of SrF_2 : Pr^{3+} (Fig. 4(a)) was obtained by monitoring the emission centered at 488 nm $({}^{3}P_{0} \rightarrow {}^{3}H_{4}$ transition). The observed excitation bands are similar in both synthesis, which are corresponding to the transitions of ${}^{3}H_{4} \rightarrow {}^{3}P_{i}$ (*j* = 0, 1, 2) and ¹I₆. All these bands occurred within the 4f-4f transitions of the Pr^{3+} ion [11]. The metastable ${}^{3}P_{0}$ energy level depopulated through non-radiative relaxation when any level above ³P₀ is optically excited. Upon excitation with 439 nm (into the ${}^{1}I_{6}$ and ${}^{3}P_{j}$, j = 0, 1, 2), depopulation from the ${}^{1}I_{6}$ and ${}^{3}P_{1, 2}$ energy bands occurred to the metastable ³P₀ energy band. Both samples exhibit bluered emission from the ³P₀ level. There are at least six luminescent bands that correspond to relaxation from the ${}^{3}P_{0}$ emission energy band. These six bands are centered at 488, 524, 605, 638, 715 and 730 nm, which are assigned to the ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$, ${}^{3}P_{0} \rightarrow {}^{3}H_{5}$, ${}^{3}P_{0} \rightarrow {}^{3}H_{6}, {}^{3}P_{0} \rightarrow {}^{3}F_{2}, {}^{3}P_{0} \rightarrow {}^{3}F_{3}$ and ${}^{3}P_{0} \rightarrow {}^{3}F_{4}$ transitions, respectively [8]. This demonstrates that the dominant transition in SrF₂ is the ${}^{3}P_{0}$ transition. There is also a small peak marked with (S) around 879 nm (Fig. 4(b) and (c)), which is assigned to the second order observation of the excitation wavelength. This band has been previously assigned to the ${}^{3}P_{0} \rightarrow {}^{1}G_{4}$ transitions [8], but in this work, we observed that its position changes with the excitation wavelength, which is exactly twice of the excitation wavelength (λ_{exc}) . The second order observation of the Pr^{3+} system has also been previously reported on Pr³⁺ doped YF₃ [2]. The actual peak of ${}^{3}P_{0} \rightarrow {}^{1}G_{4}$ transition in SrF₂ host is very much weaker and can be clearly seen in the inset of Fig. 4(c). Its position in the fluoride hosts was found around 974 nm, which is well in agreement with our results [24].

Concentration quenching is considered to be a common energy loss mechanism for dopant ions. We therefore have prepared the SrF₂ phosphors doped with different concentrations of Pr³⁺ ions. Fig. 5 shows the ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ emission intensity variation as a function of Pr³⁺ concentration for combustion and hydrothermal methods. It is worth mentioning that all the samples were carefully synthesized and measured under the same condition for each preparation method so that the Pr³⁺ ion emission intensity can be compared. In the combustion method, the PL intensity of the ${}^{3}P_{0}$ emission increased until around 0.2 mol% Pr³⁺ concentration, whereas in the hydrothermal method it increased from 0.1 up to around 0.4 mol% Pr³⁺ concentrations. It then started to decrease systematically as the Pr³⁺ doping for maximum luminescence of Pr³⁺ doped SrF₂ was about 0.2 and 0.4 mol% for the combustion

Fig. 2. SEM images of SrF₂:Pr³⁺ phosphors prepared by different synthesis methods (a) combustion and (b) hydrothermal.

Fig. 3. High resolution XPS peaks of (a) Sr 3d, (b) F 1s, (c) Pr $3d_{5/2}$ and (d) survey scan for SrF₂:Pr³⁺ phosphors.

and hydrothermal samples, respectively. The same behavior was also observed for the other emission bands. When the Pr³⁺ ions concentration increases, the $Pr^{3+}-Pr^{3+}$ distance decreases. This causes non-radiative energy transfers between Pr³⁺ ions. Therefore, the emission intensity strongly depends on the distance between Pr³⁺ ions. Thus, the difference in the intensity optimization between the synthesis methods can be associated to the distance between nearby Pr³⁺ ions. This assumption is drawn from the knowledge that the lanthanide ions form clusters in SrF₂ because charge compensation is required when Sr²⁺ is substituted by Pr³⁺ ions [25,26]. The Pr³⁺ ions form less clustering in the hydrothermal samples relative to that in the combustion samples. This makes the energy transfer between Pr³⁺ ions in combustion samples more effective than in hydrothermal samples. However, the non-radiative emission from ³P₀ level normally occurs through two different processes: relaxation by multi-phonon emission to the ¹D₂ level, or cross-relaxation between Pr³⁺ pairs. As it is mentioned earlier the probability of the multi-phonon process significantly reduces as the phonon energy of the host decreases [12]. However, the energy difference between ${}^{3}P_{0}$ and ${}^{1}D_{2}$ is around 3500 cm⁻¹ and the energy cut-off of the SrF_2 is about 350 cm⁻¹. This means that ten phonons are required to bridge the energy gap. It is well known that when the number of required phonons exceeded 5, the possibility of multi-phonon relaxation to occur is low. Hence, the multi-phonon relaxation processes for the ³P₀ and ¹D₂ levels can be considered negligible. Therefore, the ³P₀ emission quenching might occur due to the cross-relaxation mechanism between the nearby Pr³⁺ ions as a results of clustering effects.

It is necessary to describe the type of interaction that is responsible for the non-radiative energy transfer process between the Pr^{3+} ions. According to Dexter's theory [27], if the energy transfer occurs between the same sorts of activators, the strength of the multipolar interaction can be determined from the change of the emission intensity with concentration ions as follow:

$$\frac{I}{c} = \kappa \left(1 + \beta(C)^{Q/3}\right)^{-1} \tag{1}$$

where *C* is the activator concentration; Q = 6, 8, 10 for dipole– dipole, dipole–quadrupole, quadrupole–equadrupole interactions, respectively; and κ and β are constant for the same excitation conditions for a given host material.

At a concentration *C* higher than the critical quenching concentration C_c , Eq. (1) can be approximated to Eq. (2) below for $\beta(C)^{Q/3}$ [28];

$$\frac{I}{c} = \frac{\kappa'}{\beta(C)^{Q/3}} \tag{2}$$

where κ' is constant and *C* is the activator concentration greater than C_c . Fig. 6 represents log *I*/*C* as a function of log *C*. It can be seen that the dependence of log *I*/*C* versus log *C* is linear for both techniques and the line slopes are -2.006 and -2.05759 for the combustion and hydrothermal, respectively. Therefore the value of *Q* for both techniques is approximately equal to 6, which indicates that the dipole-dipole interaction between Pr^{3+} ions is the mechanism that is responsible for the concentration quenching in the SrF₂:Pr³⁺ phosphor. The dipole-dipole interactions have also been

Fig. 4. Excitation and emission spectra of SrF₂: Pr^{3*} at different synthesis methods, (a) excitation and (b) emission spectrum for combustion method, (c) emission spectrum for hydrothermal method. The inset shows the weak ${}^{3}P_{0} \rightarrow {}^{1}G_{4}$ transition band of Pr.

Fig. 5. Variation of the Pr^{3+} emission intensity as a function of the Pr^{3+} concentration. The vertical lines represent the error bars.

reported previously to describe the interaction between Pr^{3+} ions in LaF₃ and BaTa₂O₆ crystals [29,30]. Such information could be important for the optimization of the Pr^{3+} concentration in nanocrystalline materials for certain applications.

Fig. 6. The curve of log(I/C) vs. log(C) in SrF_2 : Pr^{3+} phosphors.

4. Conclusion

The SrF₂:Pr³⁺ powder was prepared by hydrothermal and combustion methods. The XRD patterns showed strong and sharp

diffraction peaks for both samples, which indicate that the powders were completely crystallized with a pure face-centred cubic (space group: Fm3m) structure. A comparison between these two methods showed that the calculated particle sizes are smaller for the hydrothermal technique. XPS confirms the presence of Sr, F and Pr materials on the host matrix. It was found that both samples exhibit blue-red emission under 439 nm from 4f-4f excitation at 425 to 500 nm. The optimum Pr³⁺ doping level for maximum emission intensity was 0.4 and 0.2 mol% for the hydrothermal and combustion samples, respectively. The reduction of Pr³⁺ emission intensity was a result of the Pr³⁺ clustering in SrF₂ due to charge compensation. The dipole-dipole interaction between the nearby Pr³⁺ ions is responsible for the concentration quenching of Pr³⁺ intensity in the SrF₂:Pr³⁺ crystal.

Acknowledgments

This work is based on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa. The financial assistance of the National Research Foundation (NRF) and the Cluster program of the University of the Free State towards this research is hereby acknowledged.

References

- [1] B.M. Van der Ende, L. Aarts, A. Meijerink, Phys. Chem. Phys. Chem. 11 (2009) 11081.
- [2] A. Srivastava, S.J. Duclos, Chem. Phys. Lett. 275 (1997) 453.
- [3] M.A. Gusowski, H.C. Swart, L.S. Karlsson, M.G. Trzebiatowska, Nanoscale 4 (2012) 541.

- [4] A.I. Voloshin, N.M. Navaleev, V.P. Kazakov, J. Lumin. 93 (2001) 199.
- [5] N. Kristianpoller, D. Weiss, R. Chen, Radiat. Meas. 38 (2004) 719.
- [6] P. Boutinaud, M. Dubois, A.P. Vink, R. Mahiou, J. Lumin. 111 (2005) 69.
 [7] P.J. Deren, R. Pazik, W. Strek, P. Boutinaud, R. Mahiou, J. Alloys Comp. 451

209

- (2008) 595. [8] B.M. Van der Ende, L. Aarts, A. Meijerink, Adv. Mater. 21 (2009) 3037.
- [9] E. Radzhabov, J. Lumin. 129 (2009) 1581.
- [10] R. Shendrik, E. Radzhabov, IEEE Trans. Nucl. Sci. 9499 (2012) 1.
- [11] L.L. Noto, S.S. Pitale, M.A. Gusowki, J.J. Terblans, O.M. Ntwaeaborwa, H.C. Swart, Powder Technol. 237 (2013) 141.
- [12] R. Naccache, F. Vetrone, A. Speghnini, M. Bettinelli, J.A. Capobianco, J. Phys. Chem. C 112 (2008) 7750.
- [13] R. Balda, J. Fernandez, I.S. Ocariz, M. Voda, A.J. Garcia, Phys. Rev. B 59 (1999) 9972.
- [14] Q.J. Chen, W.J. Zhang, X.Y. Huang, G.P. Dong, M.Y. Peng, Q.Y. Zhang, J. Alloys Comp. 513 (2012) 139.
- [15] J. Collins, M. Geen, M. Bettinelli, B. Di Bartolo, J. Lumin. 132 (2012) 2626.
- [16] J. Sun, J. Xian, H. Du, Appl. Surf. Sci. 257 (2011) 3592.
- [17] N. Rakov, R.B. Guimaraes, D.F. Franceschini, G.S. Maciel, Mater. Chem. Phys. 135 (2012) 317.
- [18] W.A.I. Tabaza, H.C. Swart, R.E. Kroon, J. Lumin. 148 (2014) 192.
- [19] C. Oprea, V. Ciupina, G. Prodan, Romanian J. Phys. 53 (2008) 223.
- [20] R.E. Kroon, H.C. Swart, O.M. Ntwaeaborwa, H.A.A. Seed Ahmed, Physica B 439 (2014) 83.
- [21] J.T. van Wijngaarden, S. Scheidelaar, T.J.H. Vlugt, M.F. Reid, A. Meijerink, Phys. Rev. B 81 (2010) 155112.
- [22] H. Ogasawara, A. Kotani, R. Potze, G.A. Sawatzky, B.T. Thole, Phys. Rev. B 44 (1999) 5465.
- [23] J. Gurgul, M.T. Rinke, I. Schellenberg, R. Pottgen, Solid State Sci. 17 (2013) 122.
 [24] A. Guille, A. Pereira, G. Breton, A. Bensalah-ledoux, B. Moine, J. Appl. Phys. 111 (2012) 043104.
- [25] P.J. Bendall, C.R.A. Catlow, J. Corish, P.W.M. Jacobs, J. Solid State Chem. 51 (1988) 159–169.
- [26] D.R. Tallent, D.S. Moore, J.C. Wright, J. Chem. Phys. 67 (1977) 2897-2907.
- [27] D.L. Dexter, J. Chem. Phys. 21 (1953) 836.
- [28] D. Wang, Q. Yin, Y. Li, M. Wang, J. Lumin. 97 (2002) 1.
- [29] G.P. Morgan, D.L. Huber, W.M. Yen, J. DE Physique 46 (1985) C7-25.
- [30] M. Ilhan, R. Samur, H. Demirer, F. Mindivan, Metalurgija 54 (2015) 407-410.