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Second sound phenomenon and ballistic heat conduction, the two wave like propagation modes of heat,
are the two most prominent, experimentally observed non-Fourier effects of heat conduction. In this
paper we compare three related theories by quantitatively analyzing the crucial NaF experiments of
Jackson, Walker and McNelly, where these effects were observed together. We conclude that with the
available information the best comparison and insight is provided by non-equilibrium thermodynamics
with internal variables. However, the available data and information is not the best, and further, new
experiments are necessary.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the technological development, manufacturing and
material designing achieved the level where the classical laws of
physics and the related engineering methodologies do not hold.
The challenging areas are the low temperatures and nano-scales.
This is most relevant for heat conduction where the deviation from
the classical Fourier law are well known since decades but the cir-
cumstances leading to non-Fourier phenomena are not yet clear. In
particular the discovery of Guyer-Krumhansl-type heat conduction
in heterogeneous materials [1,2] at room temperature shows, that
the traditional view of the validity of these theories is too narrow,
and requires further investigations. This is also important for the
two prominent non-Fourier phenomena, for the second sound
and for the ballistic propagation.

The second sound denotes the wave like propagation of heat
modelled by the Maxwell-Cattaneo-Vernotte (MCV) equation. Here
the propagation speed of heat waves is material dependent, but
less than the speed of sound wave. In case of ballistic conduction
the heat propagates exactly at the speed of mechanical sound
waves. The later one can be understood and interpreted in different
ways depending on the underlying theory.

In phonon hydrodynamics and in particular in Rational
Extended Thermodynamics [3,4], ballistic conduction is under-
stood as a non-interactive propagation of phonons. They are
reflected and scattered only on the boundaries. In the framework
of non-equilibrium thermodynamics with internal variables [5],
the ballistic propagation is represented as a coupling between
the thermal and mechanical fields and propagates with the elastic
wave. In the complex viscosity model of Rogers it is a phenomenon
of pure mechanical origin [6]. The propagation speed is common in
these three theories, it is the speed of sound. The experimental
detection of second sound and ballistic modes is not easy and
requires a theoretical insight, too. The theoretical predictions of
second sound by Tisza and Landau have been based on their
respective two fluid theories [7,8]. It was measured first by Pesh-
kov [9] in super-fluid He-4. The so-called window condition
derived by Guyer and Krumhansl [10] indicated the frequency
range, where the dissipation of the wave propagation is minimal
and significantly aided the detection of second sound in solids.
However, such kind of theoretical tool for ballistic type conduction
does not exist yet. Moreover, it is not clear what really influences
the existence of ballistic signals [11].

Let us shortly review the essential information of experiments
of Jackson, Walker and McNelly [12–14]. According to McNelly’s
PhD thesis [14], each NaF sample is identified by a number. Here
measurements on two different NaF crystals are analyzed, these
are called as ‘‘#607167J” and ‘‘#7204205W” [14]. Fig. 1 shows
the experimental results related to these samples.

These curves in Fig. 1 correspond to a so-called heat pulse
experiment. Their schematic arrangement is presented in Fig. 2
[14]. The rear side temperature history is measured and presented
previously in Fig. 1.
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Fig. 1. NaF experiment results: the left one (‘‘#607167J”) was published in [12] and the right one (‘‘#7204205W”) in [13].

Fig. 2. Arrangement of NaF experiment, original figure from [14].
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In the next section we shortly review the relevant theories.
Then we collect and compare the performance of these theories
considering both qualitative and quantitative aspects.

2. Models of ballistic heat conduction

Here we mention three different approaches to describe ballis-
tic type propagation:

� kinetic theory based phonon hydrodynamics of Dreyer and
Struchtrup [3,4],
� complex viscosity based hybrid phonon gas model of Ma [15],
� non-equilibrium thermodynamics with internal variables and
Nyíri-multipliers [5,11].

These models provided results regarding the reproduction of
NaF experiments. One should mention also the work of Frischmuth
and Cimmelli based on thermoelastic approach [16], Cimmelli et al.
[17–19] and Bargmann and Steinmann [20,21] in spite of the poor
reproduction of the measured results.
2.1. Kinetic theory and phonon hydrodynamics

It is a particle based approach with phonons. The interactions
between phonons can be classified as [3,4]:

� Normal (N) processes: the total momentum of phonons is con-
served during the interaction,

� Resistive (R) processes: the opposite of N processes, total
momentum is not conserved.

Common in both cases is that the energy is conserved during
the interactions. A third type, called as Umklapp process also exists
where neither the energy nor the momentum is conserved [4]. The
thermal conductivity k is expected to be in connection with R pro-
cesses and their frequencies 1

sR
, i.e.

k ¼ c2

3
cvsR; ð1Þ

where c is the Debye speed of phonons, cv is the isochoric specific
heat, and sR is the characteristic time of the R processes. In this
approach, Fourier’s law can be applied only when the R processes
are significantly dominant which results the diffusive kind of heat
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propagation. However, if one decreases the temperature then N pro-
cesses become dominant and the wave nature of heat conduction
reveals itself. In case of ballistic propagation there is no interaction
betweenphonons, these particles just go through the samplewithout
colliding. In order to include these propagation modes into phonon
hydrodynamics, one needs to distinguish between the phase density
for the R andNprocesses. The resistive processes tend to the function
f R and the normal processes tend to the distribution function f N:

f R ¼ y

exp hck
kBT

� �
� 1

; ð2Þ

f N ¼ y

exp hck
kBT

1� 3
4

cpini
aT4

� �n o
� 1

; ð3Þ

where h is the Planck constant, kB is the Boltzmann constant, k
denotes the wavenumber, ni is the unit vector in the direction of
k;pi is the momentum, y ¼ 3=ð8p3Þ is a constant, a is also a con-
stant, see below. The temperature T is defined as the energy density
by Debye law for phonons [3]:

e ¼ aT4; a ¼ 4p5

5
k4B
h3c3

: ð4Þ

The phase density f of one phonon evolves according to the
Boltzmann equation,

@t f þ cni@if ¼ bS; ð5Þ

where bS is the collision integral and ni is a unit vector in the direc-
tion of propagation. In the Callaway model the previous equilibrium
distributions f R and f N are considered and combined in relaxation
terms:

bS ¼ � 1
sR

ðf � f RÞ �
1
sN

ðf � f NÞ: ð6Þ

This assumption implies that two different equilibrium distribu-
tions exist in this system. Instead of solving the Boltzmann equa-
tion, one can approximate the solution by momentum series
expansion. It leads to a system of momentum equations and intro-
duce new quantities this way:

uhmi ¼ uhi1 i2 ...imi ¼
Z

knhi1 . . .nimifdk: ð7Þ

Here h i denotes the traceless symmetric part of a tensor and the
subscript m indicates the mth momentum uhmi with our shorthand
notation. The first momentum is the energy density, the second
one is the momentum density, the third one is the energy flux
and the fourth one is the deviatoric part of the pressure tensor
[4], i.e.

e ¼ hcu; pi ¼ hui; Qi ¼ hc2ui; Nhiji ¼ hcuhiji; ð8Þ
that is, u denotes the corresponding momentum quantity, i.e. u is
the zeroth (tensorial) order momentum, ui is a first order tensor
(that is a vector) and related to the momentum density pi and so
on. Let us note that this method leads to a system with infinite
number of equations and leads to the closure problem. Here for heat
conduction, one applies the simplest one, neglecting the highest
order flux, truncating the series, i.e. the new highest order
(‘‘M þ 1”th) quantity is considered as zero. One obtains the follow-
ing system of partial differential equations in 1 + 1 dimensions:

@uhmi
@t

þ m2

4m2�1
c
@uhm�1i

@x
þc

@uhmþ1i
@x

¼
0 m¼0
� 1

sR
uh1i m¼1

� 1
sR
þ 1

sN

� �
uhmi 26m6M

8>><>>:
ð9Þ
One has to applyM ffi 30 equations to obtain a good approxima-
tion of the ballistic propagation speed of phonons but it would
require infinitely many momentum equations to obtain its exact
value. Naturally, it is difficult to solve (9) for practical problems,
but M ¼ 3 equations give an acceptable approximation for a qual-
itative reproduction of the whole heat conduction process, while
one accepts that the predicted value of the ballistic propagation
speed is not correct. For M ¼ 3 one obtains a 3 field theory:

@teþ c2@xp ¼ 0;

@tpþ 1
3
@xeþ @xN ¼ � 1

sR
p; ð10Þ

@tN þ 4
15

c2@xp ¼ � 1
sR

þ 1
sN

� �
N:
2.2. Hybrid phonon gas model

Ma developed this approach based on the work of Rogers [6]
and Landau [22] to describe the longitudinal and transversal ballis-
tic signals at the same time [15,23]. In this model, the internal
energy E is splitted into two parts:

E ¼ E0 þ E0; ð11Þ
where E0 corresponds to the equilibrium part and E0 is the perturba-
tion. It is supposed to consist of the longitudinal and transversal
parts as

E0 ¼ E0
l þ 2E0

t : ð12Þ
Let us consider the classical equation of motion of a viscous

fluid:

q@tv þ qðv � gradÞv ¼ �gradP þ gr2v þ nþ 1
3
g

� �
grad divv;

ð13Þ
where v; P;q; n and g are the velocity, pressure, mass density, shear
and bulk viscosities, respectively. As Rogers stated in [6], for phonon
gas Eq. (13) is valid for heat flux q ¼ E � v, too. Moreover, when
relaxation time sN related to the normal processes is increasing
the shear viscosity tends to zero and only the bulk term plays a role
in the damping mechanism [6]. Analogously with the hydrody-
namic case [22], the bulk viscosity n is rewritten as

n ¼ sEð1� c22=c
2
1Þ

1� ixs
; ð14Þ

where s�1 ¼ s�1
R þ s�1

N , x stands for the frequency and c1; c2 are the
characteristic first and second sound velocities. Then it leads to the
system related to the transversal propagation mode (denoted by
subscript t) reduced to one dimension:

@tE
0
t þ @xqt ¼ 0;

@tqt þ
1
3
@xE

0
t ¼ � 1

sR
qt þ

2s
3ð1� ixsÞ @

2
xqt : ð15Þ

The longitudinal part has the same form but multiplied with the
ratio of the propagation speeds ct=cl.

2.3. Non-equilibrium thermodynamics

In non-equilibrium thermodynamics internal variables and cur-
rent multipliers provide the necessary extension beyond local
equilibrium [25–28]. In [5], the theoretical model is presented
and the ballistic-conductive model (BC) is derived. This model con-
sists of the same terms as the one based on phonon hydrodynamics
[3], but the coefficients are different. The ballistic-conductive (BC)
model in one spatial dimension is



Table 1
Classical material parameters for crystal #607167J.

Thermal
conductivity W

mK

� � Specific

heat J
kg K

h i Mass

density kg
m3

h i
11 K 8573 1.118 2866
13 K 10,200 1.8 2866
14.5 K 10,950 2.543 2866

Table 2
Classical material parameters for crystal #7204205W.

Thermal
conductivity W

mK

� � Specific

heat J
kg K

h i Mass

density kg
m3

h i
9.6 K 8500 0.7123 2866
12.5 K 17,300 1.62 2866
15 K 21,750 2.735 2866
17.3 K 22,880 4.45 2866
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qc@tT þ @xq ¼ �aðT � T0Þ;
sq@tqþ qþ k@xT þ j21@xQ ¼ 0;
sQ@tQ þ Q � j12@xq ¼ 0; ð16Þ
where q is the heat flux, Q is the current density of heat flux, T
stands for the temperature, q and c are the mass density and speci-
fic heat, sq and sQ are the relaxation times corresponding to the
respective fields, j21 and j12 form the antisymmetric part of the
corresponding Onsager conductivity matrix, i.e. j21 ¼ �j12 and
called dissipation parameter [5]. The coefficient k is the thermal
conductivity, a is the volumetric heat transfer coefficient introduced
in [11] to model the internal cooling of the wave propagation chan-
nel. According to the experimental setup shown in Fig. 2 both the
nonuniform heating of the front end and the cooling on the sides
may be relevant modelling conditions. For heat pulse experiments
the following dimensionless quantities are introduced [5]:

t̂ ¼ at
L2

with a ¼ k
qc

; x̂ ¼ x
L
;

bT ¼ T � T0

Tend � T0
with Tend ¼ T0 þ

�q0tp
qcL

;

q̂ ¼ q
�q0

with �q0 ¼ 1
tp

Z tp

0
q0ðtÞdt;

bQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�j12

j21

r
�q0Q ; and ĥ ¼ h

tp
qcL

; â ¼ tp
qc

a; ð17Þ

where a is the thermal diffusivity, tp is the length of the heat pulse,
Tend is the maximum or equilibrium temperature value in the adia-
batic case, �q is the mean value of the heat pulse. Furthermore, the
following dimensionless parameters are also introduced,
correspondingly

ŝD ¼ atp
L2

; ŝq ¼ asq
L2

; ŝQ ¼ asQ
L2

; ĵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�j12j21

p
L

; ð18Þ

where ŝD is the dimensionless pulse length, ŝq and ŝQ are the
dimensionless relaxation times and ĵ is the dimensionless square
root of the dissipation parameter. One obtains the dimensionless
form of ballistic-conductive (BC) model [5]:

ŝD@ t̂ T̂ þ @ x̂q̂ ¼ �âT̂;

ŝq@ t̂ q̂þ q̂þ ŝD@ x̂T̂ þ ĵ@ x̂Q̂ ¼ 0;

ŝQ@ t̂ Q̂ þ Q̂ þ ĵ@ x̂q̂ ¼ 0: ð19Þ
It is solved numerically in a way described in [5]. In our paper

[5] we have developed a numerical method based on a shifted field
concept. It allows us to handle the boundary conditions in a sim-
pler way and to be consistent with the heat pulse experiment. Fur-
thermore, the numerical scheme is based on the explicit finite
difference method. In paper [5] the scheme is presented together
with the corresponding stability analysis. Its first test is presented
in [11], where only one measurement is simulated, namely the one
on ‘‘#607167J” corresponding to 13 K. The main conclusions of [11]
are the following:

� The samples are ambiguously identified in [12,13] and it leads
to misunderstandings regarding the material parameters.

� The role of boundary conditions must be emphasized. Concern-
ing the heat pulse, its length is not described anywhere, only an
interval is mentioned by Jackson et al., i.e. somewhere between
0:1 ls and 1 ls. We applied the values given by Ma [23,15].

� The presence of cooling should be considered due to a point like
excitation on the front end. It is accounted as a heat transfer
term in the balance equation of internal energy. Equivalently,
Dreyer and Structhtup [3] solves their phonon hydrodynamical
model on semi-infinite region instead of finite domain to obtain
such decreasing characteristic.
This experience regarding the modelling of NaF experiments is
necessary to reproduce the other measurements, too.

2.4. Boundary and initial conditions

As a front side boundary condition a smooth heat pulse is
defined with dimensionless quantities:

q̂ðx̂ ¼ 0; t̂Þ ¼ 1� cos 2p � t̂
t̂p

� �� �
if 0 < t̂ 6 t̂p;

0 if t̂ > t̂p;

8<:
its length is different in the two series of experiments [23,15]. On
the rear side we used only the adiabatic boundary condition
(q̂ðx̂ ¼ 1; t̂Þ ¼ 0) because the bolometer measures the signal directly
at this point. It is enough to prescribe the boundary only for the
field of heat flux due to the applied numerical method, for details,
see [5]. Regarding the initial conditions, all fields are homoge-
neously zero at the initial time instant. It means homogeneous tem-
perature distribution which is equal to the reference temperature of
each crystal.

3. Material parameters

This is one of the most crucial part to simulate ballistic heat
conduction. McNelly’s PhD thesis [14] is used to find by linear
interpolation the proper value of thermal conductivity. The data
of thermal conductivity from [12,13] are not used. Moreover, the
specific heat according the paper of Hardy and Jaswal [24] is calcu-
lated for each reference temperature value using linear interpola-
tion, too. Due to the lack of temperature dependence of mass
density we used its value corresponding to 15 K [20,29].

Tables 1 and 2 sum up the classical material parameters used in
our calculations.

The missing relaxation times are determined from simulations,
i.e. fitted for the corresponding measurement along with the volu-
metric heat transfer coefficient. When comparing the ballistic-
conductive model to the phonon hydrodynamical one, the differ-
ence is that the parameter j is a free one but in the kinetic theory
it is not. A crucial property of phonon hydrodynamical model is
that, one has to apply at least 30 momentum equation to approx-
imate the ballistic propagation speed. In the BC model, one can
adjust j to obtain the proper propagation speed based on the char-
acteristic speed ĉ [5,11]:

ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĵ2 þ ŝQ
ŝqŝQ

s
: ð20Þ



Fig. 3. Results of the simulations related to both crystals.
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4. Results

One should be aware of the fact that there is no vertical scale on
the original measurement results (Fig. 1). In order to overcome this
shortcoming, two constraints are introduced. The first one
accounts the relative amplitudes of each propagation mode, as it
is introduced in [11]. The second one concerns the relaxation
times. It is assumed that the ratio of sq and sQ cannot change



Fig. 4. The temperature dependence of the fitted parameters for different crystals.
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Table 6
The fitted parameters for crystal #7204205W.

Relax. time I. (sq) [ls] Relax. time II. (sQ ) [ls]

9.6 K 3 0.4
12.5 K 3 0.18
15 K 3 0.14
17.3 K 3 0.1

Table 5
The fitted parameters for crystal #607167J.

Relax. time I. (sq) [ls] Relax. time II. (sQ ) [ls]

11 K 1.56 0.3
13 K 1.04 0.21
14.5 K 0.74 0.19

Table 3
The fitted parameters for crystal #607167J.

Relax.
time I. (sq) [ls]

Relax.
time II. (sQ ) [ls]

Heat transfer

coeff. (a) W
mm3 K

h i
11 K 0.471 0.18 3.34
13 K 0.586 0.22 2.8
14.5 K 0.65 0.24 2.31

Table 4
The fitted parameters for crystal #7204205W.

Relax. time
I. (sq) [ls]

Relax. time
II. (sQ ) [ls]

Heat transfer

coeff. (a) W
mm3 K

h i
9.6 K 1.17 0.25 6.8
12.5 K 0.961 0.1 12.63
15 K 0.833 0.085 17.6
17.3 K 0.707 0.07 15.94
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between two measurements too much, i.e. order of magnitudes.
These constraints beside the arrival of each signal seem to be
enough for complete reproduction.

One can see the results of the simulations (Fig. 3(a)–(g)) for
each particular curves of Fig. 1. There are two different side-
effects of these results. The first one corresponds to the sample
#607167J. There is a broadening effect between the second sound
and ballistic signal. The second one effects the other sample. Here,
seemingly, the temperature goes below the initial temperature and
the origin of this anomalous effect remains unknown because of
the lack of informations regarding the precise experimental condi-
tions. Fig. 4(a) sums up all of the calculations and compares to the
original curves. The fitted parameters can be found in Tables 3 and
Fig. 5. Summarized result of the simulations from phonon hyd
4. Fig. 4 shows their temperature dependence. The goodness of this
fitting can be determined by direct comparison with the results of
Dreyer and Struchtrup [3] and Ma [23,15].

4.1. Comparison with the Rational Extended Thermodynamical (RET)
model

In the calculations of Dreyer and Struchtrup [3] the ballistic
propagation speed is different from the measured value. However,
in this RET based phonon hydrodynamical model only two
relaxation time parameters are to be fitted. In order to solve the
system (10) the following initial and boundary conditions are used
[4]: eðx; t ¼ 0Þ ¼ e0 ¼ constant; pðx; t ¼ 0Þ ¼ 0; Nðx; t ¼ 0Þ ¼ 0;
pðx ¼ 0; t < 0Þ ¼ 0; pðx ¼ 0; 0 6 t 6 DtÞ ¼ ce0; pðx ¼ 0;Dt 6 tÞ ¼ 0;
pðx ! 1; tÞ ¼ 0. Here Dt denotes the pulse duration. The result of
the original calculations can be seen in Fig. 5.

It is worth to compare the temperature dependency of relax-
ation times. The fitted relaxation times from RET are summarized
in Tables 5 and 6 below based on [4]. The correspondence between
the RET and BC models is:
rodynamical model with three momentum equations [4].



Fig. 6. Summarized result of the simulations from hybrid phonon gas model [23].

Table 8
The fitted parameters for crystal #7204205W.

Relax. time I. (sq) [ls] Relax. time II. (sQ ) [ls]

9.6 K 1.56 1.56
12.5 K 1.56 0.294
15 K 1.56 0.245
17.3 K 1.56 0.17

Table 7
The fitted parameters for crystal #607167J.

Relax. time I. (sq) [ls] Relax. time II. (sQ ) [ls]

11 K 1.056 0.281
13 K 0.937 0.248
14.5 K 0.723 0.208
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sq ¼ sR; sQ ¼ s:

It is remarkable to note that the sq time is constant in case of
crystal #7204205W. Moreover, the tendency of temperature
dependence is opposite for crystal #607167J comparing to the BC
model. Beside the inappropriate value of thermal conductivity,
the relative amplitudes seem to be also inaccurate. Moreover, a
clear ballistic signal at 12:5 K is predicted by the theory but it does
not exists in the experiment.

4.2. Comparison with the hybrid phonon gas model

The difference between the prediction and the measured results
is considerably higher in case of Ma’s model [15,23]. Tables 7 and 8
summarize the fitted relaxation time parameters. The values of
sRð¼ sqÞ and sN are given in [23] and sð¼ sQ Þ must be calculated
according to the kinetic theory:

1
s
¼ 1
sR

þ 1
sN

: ð21Þ

Fig. 6 compares the theoretical results to the experiments. In
case of crystal #7204205W (9:6 K), there is no clear sign of the sec-
ond sound thus Ma adjusted sN as infinite, i.e. sR ¼ s. Moreover, a
clear analogy can be observed with the results of Dreyer and
Struchtrup [3]. The temperature dependency seems to be the same
in these cases. It is remarkable that in the papers of Ma [15,23] the
boundary conditions are missing.
5. Summary

The NaF experiments of second sound and ballistic phonon
propagation performed by Jackson et al. are quantitatively ana-
lyzed in this paper. Performance of the ballistic-conductive equa-
tions of non-equilibrium thermodynamics with internal variables
is compared to the performance of the 3 field equations of Rational
Extended Thermodynamics (RET) by Dreyer and Struchtrup [3] and
to the ones based on hybrid phonon gas model by Ma [15,23]. The
effectiveness of the ballistic-conductive model is outstanding and
competitive with both models.

The differences are important not only in the performance, in
concepts, but also in qualitative properties. E.g. it is shown that
the relaxation time sq have a temperature dependency in non-
equilibrium thermodynamics but in RET it has not. It is also impor-
tant that neither RET, nor the complex viscosity approach consider
cooling at the rear side, in spite of its inevitable appearance in the
experiments.

The different conceptual background and the difference in
validity of the theories are remarkable, too. Complex viscosity the-
ory introduces a hydrodynamic equation for energy propagation,
and complex viscosity simulates an additional damping effect over
the viscosity. This suggestion is analogous to thermo-mass theory
of Guo [30–32] and lacks a fundamental background. The version
of phonon hydrodynamics by Rational Extended Thermodynamics
has a definite microscopic background and fixes the particular
parameters. In principle it is a theory of rarefied gases, the partic-
ular closure influences the validity range. The recent poor perfor-
mance in modelling could be improved by considering the new
dense gas extension of Ruggeri, Arima and Sugiyama [33–37] or
a better understanding of the internal mechanisms beyond the
simple two channel relaxation of the Callaway collision integral.
However, the necessity of large number of equations with increas-
ing tensorial orders looks like an important practical and theoret-
ical drawback. The non-equilibrium thermodynamic theory is
compatible with the equations of the kinetic theory and has a
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flexibility of modelling, therefore its performance was the best. The
validity of the theory is not restricted by particular microscopic
pictures, it is based on the second law only [5]. Therefore the the-
ory does not exclude ballistic propagation of heat at room temper-
ature, due to material heterogeneities as an origin of a particular
heat conduction mechanism [28,38–40].

The available experimental data are old and some conditions
indicate possible crucial problems. E.g. in Fig. 2 the thermal excita-
tion is point-like compared to the size of the sample. Therefore a
one dimensional propagation is not ensured and two dimensional
effects are expected. However, due to the lack of related informa-
tion and parameters a quantitative theoretical analysis is meaning-
less. In order to improve our understanding of wave like
propagation modes of heat and to develop the corresponding excit-
ing technology of dynamically regulated heat conduction new
experimental data are necessary.
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