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h i g h l i g h t s
� MgeKCl generates 200 mL more hydrogen than MgeNaCl for 1 g Mg at 15 h milling time.

� The KCl salt is more favorable for hydrogen generation than NaCl salt.

� The rate of H2 is correlated with the degree of penetration of the salt into Mg particles.

� The increase of the milling time increased the hydrogen generation rate.
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a b s t r a c t

Magnesium powder was ball milled with different weight percentages of NaCl and KCl.

These mixtures were added to hot water (80 �C) and the hydrogen generation rate was

measured. The results show that the hydrogen generation rate increased with an increase

of the presence of both salts. Moreover, increase of the time of milling increased the

hydrogen generation rate. The structure of magnesium salt mixtures was further investi-

gated using SEM and EDS and it was demonstrated that higher hydrogen generation rate is

correlated with the degree of penetration of the salt into magnesium particles. In addition,

we determined that for the 15 h milled composite samples, MgeKCl mixture generates

200 mL more hydrogen than MgeNaCl for every 1 g Mg used. These results show that KCl

salt addition is promising for hydrogen generation in presented experimental system.

Crown Copyright © 2020 Published by Elsevier Ltd on behalf of Hydrogen Energy Publica-

tions LLC. All rights reserved.
Introduction

The depletion of fossil energy resources (coal, crude oil and

natural gas) and environmental pollution generated by their

extensive used, requires the scientific community to search
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for efficient ways to develop high-performance, low cost and

environmentally friendly energy storage and production sys-

tems. Different energy sources like wind, solar and nuclear

have been extensively explored. Because of weather

constraint in some places and environmental concern, wind,

solar and nuclear cannot provide enough energy for a
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worldwide green economy [1,2]. However, due to high energy

content, cleanness and abundance, hydrogen is a promising

energy vector for future economy and can contribute to a so-

lution of the problem’s greenhouse gases emission and envi-

ronmental pollution. In fuel cells its byproduct is only H2O.

However, worldwide hydrogen use as an energy vector is

restrained by lack of convenient hydrogen production. There

are various methods for hydrogen productions that have been

proposed including electrolysis of water [3], steam reforming

of hydrocarbons gasification of heavy oil, coal or biomass

[4e8]. Nevertheless, thesemethods have some holdup such as

high energy input, low efficiency and high price. However,

hydrogen generation through hydrolysis reaction is showed to

be a promising method due to its low cost, safety and possible

recyclability of the hydrolysis products [9e11]. So far, many

studies have been performed on many kinds of the materials

including metals [12], metal hydrides [13e15] andmetal alloys

[16,17]. But the main problemwith these methods is the oxide

layer that is formed on the surface of the metal which stops

the reaction from completing [18,19]. Therefore, to overcome

these barriers scientists have suggested variousmethods such

as changing the pH of the solution [14,20] ball milling

[18,19,21e23], use of catalysts [24], ultrasonic irradiation

[25,26], and addition of carbon materials [27]. The most

effective methods for improving the reaction are ball milling

and alloying [28,29]. Magnesium in its purest form has not

been successfully adopted for producing hydrogen due to

formation of oxide layer during hydrolysis [30]. Moreover, Mg,

Al, their hydrides and composites have shown promising re-

sults for hydrogen generation by hydrolysis through ball

milling [9,30,31]. In addition, ball milling of aluminum powder

in the presence of water-soluble salts is considered effective

and safe [32]. Also, water-soluble salts (NaCl, KCl, etc.) can be

considered in this process as they are cost effective and

significantly shorten the completion time of the reaction [31].

According to Grosjean et al. [33] the hydrolysis reaction of Mg

and MgeNi composite, by high-energy ball milling of 30 min,

was faster and more extensive when they were immersed in

1 M KCl. They explain this phenomenon assuming the crea-

tion of micro-galvanic cells between Mg and dispersed Ni el-

ements, this should accelerate greatly Mg corrosion in highly

conductive aqueous media. Moreover, they also claim that Mg

or MgH2 milled with salts like LiCl, MgCl2, KCl has high hy-

drolysis reactivity in pure water. It is found that the 0.5 h

milled MgH2e3 mol% MgCl2 composite can produce 964 mL/g

hydrogen in pure water at room temperature [33]. In addition,

Tan et al. [34] showed that 466 mL g�1 H2 in 10 min and

616 mL g�1 H2 in 30 min at 25 �C was produced by reacting

Mg2Si and NH4F. Ma et al. [35] also demonstrated that plasma-

assisted milling of Mg and 20 wt% expanded graphite (EG) can

significantly enhance the hydrolysis properties of Mg, and the

obtained composite may generate 614.3 mL g�1 H2 with a hy-

drolysis conversion rate of 83.5% in 25 min. Moreover, Tan

et al. [36] showed that composite in 0.5 M MgCl2 solution

generated 445 mL/g hydrogen in 5 min, 688 mL/g hydrogen in

10 min and 889 mL/g hydrogen (conversion rate 99%) in

40 min at 328 K. In addition, Huang.et al.[37] stated that Mg-5

wt% MoO3 and Fe2O3 demonstrate the best hydrolysis per-

formance (above 888 mL/g and 95.2% of theoretical hydrogen

generation yield in 10 min) in comparison to MgeFe3O4,
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MgeTiO2, MgeNb2O5 and MgeCaO composites. Also, they

showed that MgH2-4.5 wt% NH4Cl system showed the fastest

hydrolysis rate, producing 1310 mL/g hydrogen in 5 min,

1604 mL/g hydrogen in 10 min, and 1660 mL/g hydrogen in

30 min at 60 �C [38]. Also, Huang et al. [39] demonstrated that

the hydrogenated Mg3La with smaller particle size of [<12] mm
had a higher hydrolysis yield of 863 ml/g (7.70 wt%) hydrogen.

He also showed that HeMg3CeNi0.1 has been identified, which

can generate 276 mL g�1 min�1 hydrogen in the first 1.5 min

and achieve a total yield of 1088 mL/g [40]. Zhong et al. [41]

developed a simple regeneration process via ball milling with

MgeAl alloys as the reducing agent for NaB (OH)4 under an

argon atmosphere. Under optimized conditions, a high yield

of about 72% of NaBH4 could be obtained. Moreover, Huang

et al. [42] showed that the introduction of Mg2Si increases the

NaBH4 regeneration yield to 86%, which is the highest regen-

eration yield reported for NaBH4 until now. Also Zhong et al.

[43] showed that using a mixture of magnesium silicide and

dihydrate sodiummetaborate is reacted via ball milling under

ambient conditions without the requirements of additional

hydrogen sources a 30-fold reduction in cost over a previous

study that used MgH2 as the reduction agent. In addition,

Nabid et al. [44] proposed a new route to synthesis Fe2O3

nanosheets using glucose, urea and ferric nitrate. By coating

Fe2O3 core sheet with nitrogen doped carbon materials shell,

they showed excellent catalytic activity with hydrogen pro-

duction rate of 637 mL (H2) min�1$gcat
�1. Furthermore, Pighin

et al. [45] reported that the as-milled MgH2 shows average

hydrolysis properties with good hydrogen production capacity

(1390 mL/g H2) and kinetics (50% of the total yield in 2.3 min).

Chehade et al. [46] demonstrates a unique method of

hydrogen production via water plasmolysis and investigates

the energy and exergy efficiencies for applications involving

the collection of hydrogen gas as an alternative fuel source.

Despite of the various research on production of hydrogen

themagnesium ball milling with two control agents (NaCl and

KCl) with hot water has not been investigated. We will report

here the hydrogen production using ball milled mixture of

magnesium powder and water-soluble salts with hot water.

We will also optimize the hydrogen production efficiency by

analyzing the role of milling times and optimizing the weight

percentage of the added NaCl and KCl salts.
Experiment procedures

Ball milling

The Magnesium powder was purchased from Alfa Aeser of

99.8% purity (particle size �20 þ 100 mesh). After mixing

sodium chloride (purity: 99%) with the magnesium powder,

the mixture was ball milled with different weight percent-

ages of NaCl (25%, 50%, 75%). Ball milling was performedwith

a ball to powder mass ratio of 30:1in an inert argon atmo-

sphere using planetary ball mill (Torrey Hills- ND2L) with

stainless steel cups (285 mL capacity) and balls (28 of 16 mm

and 6 of 18mmdiameter). Themilling speed wasmaintained

at 200 RPM for durations of 1, 3, 7 and 15 h to evaluate the

effect of the milling time. To assess the influence of the type

of salts, mixtures of 25 wt% KCl- 75 wt% Mg, 75 wt% KCl-
ogen generation by reaction of ball milled mixture of magnesium
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25 wt% Mg and 50 wt% KCl- 50 wt% Mg were ball milled for 1,

3, 7 and 15 h.

Hydrogen measurement

Hydrogen was measured using a similar setup as discussed in

Ref. [47]. Powdered mixtures equivalent to 1 g of Magnesium

was added to an Erlenmeyer flask containing 200 mL of

distilled water at 80 ± 2 0C at a constant stirring rate of

120 rpm. The hydrogen gas produced was passed through a

desiccant (CaSO4) to absorb moisture, and then to an

ADM1000 flowmeter to measure its flow rate. The flowmeter

was connected to a computer running ADM Trend software to

acquire the data. A baseline curve was obtained by measuring

the flow rate from 200 mL of distilled water at 80 �C with a

constant stirring rate of 120 rpm with no powder added. This

flow ratewas then subtracted from the data obtained from the

test with powder to ensure that the results obtained do not

contain any contribution fromwater moisture or the air in the

flask during heating. Maximum amount of generated

hydrogen was for 15 h MgeNaCl mixture more than 75% and

that is very close to the theoretical value of hydrogen gener-

ation (900 mL) for 1 g of Mg.

Scanning electron microscopy

SEM examinations were made using Hitachi SU6600 field

emission scanning electron microscope. A small amount of
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Fig. 1 e Hydrogen generated for Mg -NaCl 50% mix
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eachmilled powderwasmixedwith a conductive carbon resin

powder mixed and mounted. The mounted samples were

then polished using abrasive grinding papers ranging from600

to 2000. Average particle sizes were calculated using Image J

software.
Results and discussion

Effect of ball milling time and NaCl on hydrogen generation

Hydrogen measurement
Milled puremagnesiumpowder did not generate anyhydrogen.

This was most likely because the oxide layer formed on the

surface of the particles. Another reason was that the magne-

sium powder was difficult to wet making it float on the water.

The as received and non-milled Mg and NaCl powder without

ball milling also failed to generate hydrogen.

Figure 1 shows hydrogen generation in ml with as function

of ball milling time for 50%magnesium and 50%NaClmixture.

From Fig. 1 we can see that mixture milled for 1 h produced a

small amount of H2, below 100 mL. Furthermore, increasing

the milling time to 3 h increased production considerably to

around 300 mL. As the milling time was increased to 7 h and

later to 15 h the amount of generated hydrogen increased

significantly. Further milling of the mixture to 25 h and 50 h

resulted in cold welding of Mg particles and hence they were

not fit for hydrolysis. The results obtained that no hydrogen
500 2000 2500 3000
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3h

1h

ture for 1 h, 3 h, 7 h and 15 h milling period.
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Fig. 2 e SEM images of the Mg 50%-NaCl 50% mixtures milled for 1 h, 3 h, 7 h, and 15 h.

Fig. 3 e Elemental mapping of mixture showing the homogeneity of Mg and NaCl for different ball milling times (1 h, 3 h, 7 h

and 15 h).

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x4

Please cite this article as: Shetty T et al., A comparative study of hydrogen generation by reaction of ball milled mixture of magnesium
powder with two water-soluble salts (NaCl and KCl) in hot water, International Journal of Hydrogen Energy, https://doi.org/10.1016/
j.ijhydene.2020.03.156

https://doi.org/10.1016/j.ijhydene.2020.03.156


Fig. 4 e EDS scan of cross section of Mg50%-NaCl50% mixture ball milled for a) 1 h b) 3 h
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was produced with just ball milled pure magnesium nor with

the as received magnesium and NaCl mixture. The fact that

NaCl alone is not effective in hydrogen generation nor is it

effective when it is not present during milling brings us to

conclusion that the presence of salt during ball milling plays

an important role and secondly the presence of Cl ions does

not play a significant role in pitting corrosion of magnesium

unlike it was suggested by Grosjean et al. [13].

Microstructure
SEM was used to examine the ball milled mixture in order to

understand the mechanics behind the improved hydrogen

generation with increased milling time. The SEM images in

Fig. 2 show a change in themorphology and particle sizes after

ball milling. After 1 h of ball milling, we see that magnesium

particles which were initially spherical are deformed to form

flat disks like structures with an average particle size of

690 mm. Furthermore, milling deforms the particles until a
Fig. 5 e EDS scan of cross section of MgeNaCl
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point of fracture is reached and smaller particles are formed.

The average particle size of magnesiumwhich was ball milled

for 3 h, 7 h and 15 h is 277 mm, 65 mmand 46 mm respectively. It

was possible to distinguish between the salt and magnesium

particles for mixtures milled for 1 h and 3 h, however for

higher milling times i.e. for 7 h and 15 h it was not possible to

distinguish as the particles formed MgeNaCl composite. The

results obtained are in good agreement with ‘what is reported

by Grosjean et al. [48].

As mentioned earlier in Fig. 1, the highest amount of

hydrogen was obtained after milling for 15 h, longer milling

time does not enhance hydrogen production. The increase in

produced hydrogen can also be attributed to the decrease in

particle size after longer milling time.

In addition, whenMgeNaClmixture ismilled, NaCl acts as a

process control agent which prevents cold welding of magne-

sium and assists in forming smaller particles [49]. Initially the

NaCl particles cover the surface of the Mg matrix which are
50% mixture ball milled for a) 7 h b) 15 h.
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Fig. 6 e Represents the SEM and the line scan showing the occurrence of Mg and NaCl on the cross section of the particle for

different ball milling time.

Fig. 7 e Hydrogen generation profile for MgeNaCl 25% and

MgeNaCl 75% mixture ball-milled for 1 h, 3 h, 7 h, 15 h.
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seen in the EDSmapping in Fig. 3, Fig. 4 and Fig. 5. However, the

embedding of NaCl in magnesium is the most important, this

helps create voids andwhen dissolved in water generates fresh

surfaces for hydrolysis. However further increasing the milling

time above 15 h resulted in cold welding as all NaCl was

embedded in thematrix leading to coalescence of particles. The

EDS scans in Fig. 3 shows the distribution of Mg and Na ele-

ments. The green color represents Mg while Na is mapped red.

For themixturemilled for 1 h, NaCl is seen covering the surface

on the Mg particles. As the milling time was increased to 3 h,

there were still some dark spots observed on the Mg particles

which corresponded to Na. Furthermore, increasing themilling

time from 7 h to 15 h shows a homogenous distribution of both

Mg and NaCl phases. This shows that the particles form now

MgeNaCl composite inwhich the two phases are wellmixed as

illustrated in Fig. 5.

The SEM in Fig. 6 reveals the characteristic changes in

particulate morphology and sizes after milling. After 1 h, the

Mg particles which were initially spherical are deformed to

form flat disk structures with an average particle size of

690 mm. Further milling deforms the particles until a point of

fracture is reached and smaller particles are formed. The

average particle size of Mg which was ball milled for 3 h, 7 h

and 15 h is 277 mm, 65 mm and 46 mm respectively.

The EDS line scan in Fig. 6 shows the presence of Mg and

NaCl for 1 h, 3 h, 7 h and 15 h milled mixtures. The red line

represents Mg and the violet line represents Na. These scans
ogen generation by reaction of ball milled mixture of magnesium
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Fig. 8 e SEM images comparing the MgeNaCl mixtures with different weight % of NaCl milled for 1 h, 3 h, 7 h, and 15 h.

Fig. 9 e Hydrogen generation profile for (a) Mg 75%-KCl 25% (b) Mg 50%-KCl 50% (c) Mg 25%KCl 75% mixture ball-milled for

1 h, 3 h, 7 h, 15 h.
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were obtained across the cross section of a particle and they

represent the distribution of the elements. For shorter milling

times (1 h and 3 h) the of Mg and Na elements are distributed

in selected areas and do not mix. When the milling time in-

creases Mg and NaCl mixed more evidently and at time of

milling of 15 h form homogenous composite structure.

Effect of weight percentage of NaCl

Figure 7 shows hydrogen generation of ball milled MgeNaCl

25% and MgeNaCl 75% for durations 1 h, 3 h, 7 h and 15 h

for 1 g of Mg. It is evident from the result that the amount of

hydrogen generated increases with increased amount of salt

content in the mixture. Comparing Figs. 1 and 4, for the same

time period of milling the amount of hydrogen generated is

higher. This increase in the amount of generated hydrogen is

due to higher amounts of NaCl embedded in the matrix and

associated increase in permeation of salt and water into Mg

particles. This led to an increase in area of Mg contact with

water which explains the improved kinetics of the reaction.

The SEM images in Fig. 8, reveals that the average particle

size changes with time of milling for three different concen-

trations of NaCl, which are 25%,50% and 75%.

The SEM micrographs in Fig. 8 illustrate a decrease in

average particle size as the wt% of NaCl increase while the

milling time is constant. This can be explained by the role of

NaCl in preventing cold welding of Mg particles as showed by

Zidoune et al. [49].

Role of KCl in hydrogen generation

Figure 9 shows the hydrogen generation for MgeKCl mixtures

with different wt% ball milled for 1 h, 3 h, 7 h and 15 h. The

results follow a similar trend as already reportedwithNaCl i.e.

increased amount of hydrogen produced with increasing

milling time and with increase of wt % of KCl. The SEM and

EDS results were also like the MgeNaCl results and show

better refinement of particles with increased milling time and

higher KCl wt%.
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However, based on results presented in Fig. 9, KCl showed

slightly higher amount of hydrogen produced as compared

with NaCl. To compare the results obtained with both agents

(NaCl and KCl), we present in Fig. 10 the weight percentage of

salts obtained under similar processing conditions.

We see that for the 15 h milled samples, MgeKCl mixture

generated approximately 200 mL more hydrogen than

MgeNaCl for every 1 gMg used. In addition, Razavi-Tousi et al.

[50] showed that the formation of interlayer spaces within the

investigated Al particles effectively increases hydrogen yield.

Conclusion

The presence of salt (NaCl and KCl) enhanced the hydrogen

generation rate by facilitating the ingress of the salty water

into magnesium particles. The milling process is optimized to

allow complete mixing of the salt and the metal. The milling

time also plays an important role in the hydrogen generation

as it creates a special particle structure that allows ingress of

the salt. The best results were obtained for MgeKCl 75%

composite ball milled for 15 h and resulted in 80% hydrogen

generation in less than 10 min. The SEM and EDS results show

that with increasing milling time particles were more refined

with Mg and salt phases having a uniform distribution. The

EDS maps of the cross section of the particles proves that salt

particles were embedded inside the metal matrix. During hy-

drolysis, the salt dissolves in water thus increasing the surface

area for the reaction and the hydrogen production rate. The

type of salt used also had an influence on the hydrogen gen-

eration rate. Both salts that were used are abundant, however

there is still room for research on KCl additions to improve the

effect of this salt on hydrogen generation.
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