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A B S T R A C T

Time resolution measurements were performed using four digital timing algorithms and a pair of truncated-
cone shaped, 38-mm diameter LaBr3(Ce) fast-timing scintillator detectors. The best resolution [FWHM=143(3)
ps] was found for transitions from a 60Co source when fitting the rising part of sampled waveforms with a
cubic polynomial and applying a leading-edge threshold. An average-pulse autocovariance function performed
slightly worse [155(3) ps], but was found to be better than digital constant-fraction [178(4) ps] and leading-
edge [177(4) ps] algorithms. Use of a 152Eu source allowed the performance of the four algorithms to be tested
across a range of 𝛾-ray energies with the LaBr3(Ce) detectors. Here the autocovariance algorithm performed
best. Changing the sampling speed showed minimal degradation in the time resolution at 20 GS/s, though
at 4 GS/s the resolutions were 30–60% worse. These results show that at sampling speeds of 20 or 40 GS/s
the time resolutions obtained are close to those reported for analogue pulse-processing electronics. Compared
to other works, using slower sampling speeds but higher vertical resolution, slightly worse performance was
obtained.

1. Introduction

Fast scintillator detectors are used for 𝛾 − 𝛾 timing and have a
wide range of applications, including lifetime measurements of excited
nuclear states [1], medical positron-emission tomography (PET) and
range monitoring in hadron therapy [2]. These scintillation crystals
have the properties of modest energy resolution and fast decay times
(ns), and are constructed often with the aim of optimizing the time
rather than energy resolution of the system. Recent progress in the
fabrication of lanthanide-halide crystals, such as LaBr3(Ce), with an
energy resolution of ∼3% at 662 keV and time resolution as good as
98(2) ps for ∼1.2 MeV photons [3] has given renewed interest in the use
and development scintillator detectors, resulting in, for example, the
construction of the FATIMA array [4,5]. The decay time of LaBr3(Ce)
is 16 ns and 63,000 photons are emitted per MeV of energy absorbed.
This compares with a decay time of 0.7 ns and 1800 photons/MeV
for the fast component of the commonly used BaF2. These scintillator
detectors can be used to measure nuclear-state lifetimes in the 10s-of-
ps-to-ns time range [1,6,7]. To date analogue signal processing chains
have been almost exclusively used in applications which require the
very best time resolution.

In principle digital acquisition systems, with very high-speed sam-
pling, should allow equivalent, or even improved, timing performance
over analogue ones, as signal processing can reduce jitter and fixed-
frequency noise and bespoke algorithms can be developed for a par-
ticular detection system. Recently, time resolutions approaching, and
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matching, the best ones achieved with analogue electronics have been
obtained with LaBr3(Ce) detectors, using digitizers with sampling fre-
quencies of 0.5, 4 and 5 GS/s by applying digital timing algorithms
[8–10]. An improved time resolution over analogue systems was earlier
obtained with Ge detectors using digital pulse-shape analysis [11].
Furthermore, digital acquisition systems have other advantages over
analogue ones including (potentially) lower cost per channel, fewer
modules and timing stamping of individual hits, allowing offline event
reconstruction. Any algorithms used for pulse-shape analysis should
ideally be simple and efficient enough to be implemented on field-
programmable gate arrays (FPGAs), allowing real-time processing.
Pulse-shape analysis has already been used to perform, for example,
𝛼/𝛾 discrimination in LaBr3(Ce) crystals [12] and neutron/𝛾 selection
in liquid scintillators [13].

The purely statistical resolving time of a pair of detectors is given by
𝛿𝑡 = 𝜎

√

𝑛
where 𝑛 is the number of events and 𝜎 is the width parameter

of the Gaussian function describing the distribution. Hence an exper-
iment using detectors with twice worse time resolution will require 4
times the number of counts to achieve the same statistical precision.
Therefore there is strong motivation to develop timing algorithms
suitable for use with digital acquisition systems which have perfor-
mances equivalent to, or better than, the best analogue pulse-processing
electronics.

Improved timing resolution is also of interest for clinical PET ap-
plications, which would allow lower injected patient doses. Although
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the 𝛾-ray detectors used in PET applications are much smaller than the
crystals used for nuclear excited-state lifetime measurements, equiva-
lent pulse-processing techniques are used to extract timing information.
Clinical PET time resolutions better than 100 ps would allow some
of the artefacts affecting tomographic reconstruction to be removed
for devices with partial angular coverage [14]. For resolutions of
10 ps time-consuming image reconstruction techniques would not be
required, as true real-time 3-D image information would be avail-
able [14]. In the case of prompt-𝛾 timing for particle therapy, transi-
tions with energies typically in the range 3–6 MeV are measured, for
which better time resolution is expected than at 511 keV [2].

With this in mind we have measured the time resolution of a
pair of fast LaBr3(Ce) scintillator detectors when applying four differ-
ent digital algorithms to extract timing information. These algorithms
were a leading-edge discrimination of the raw detector pulse and also
following a cubic polynomial fit to the rising slope, a digital constant-
fraction discriminator and an ideal-pulse autocovariance function. The
first and third pulse-processing algorithms are equivalent to analogue
fast-signal treatment schemes. These algorithms differ from other fast
filters often implemented on commercial digital acquisitions systems
for use with Ge detectors, such as trapezoidal ones. These fast-filters
have the aim of distinguishing real low-energy signals from noise.
Limited tests of these algorithms within the present work gave degraded
timing performance in comparison with the ones used below, however
this does not exclude that a well-tuned algorithm of this type, with its
inherent noise filtering, may give improved results in the future. The
experiments were performed with a digital oscilloscope running at a
sampling frequency of 40 GS/s, with a 4 GHz bandwidth and 10-bit
vertical resolution. The effect of varying the sampling frequency was
also studied.

2. Experimental setup

The time resolution of 𝛾 − 𝛾 coincidences detected in a pair of
scintillator detectors was studied in order to determine pulse-processing
algorithm performance. A pair of conical shaped LaBr3(Ce) scintillator
detectors were used to detect 𝛾 rays emitted from 60Co and 152Eu
radioactive sources. The detectors were placed ∼2.5 cm from the
source and at 90◦ to each other, to minimize Compton scattering. The
LaBr3(Ce) crystals were 38 mm long and 38-mm wide at the base. Their
exact dimensions are reported in [3]. These crystals were mounted on
Hamamatsu R9779 photomultiplier tubes (PMTs). The anode output
signal of the PMT base was connected directly to the oscilloscope and
the dynode output was terminated with a 50-Ω resistor. The oscillo-
scope was a LeCroy HDO9404 model with 10-bit vertical resolution
and a vertical range of 1 V. It ran at a sampling speed of 40 GS/s. Each
digitized trace was 4096 samples (102.4 ns) long, enough to contain all
of the LaBr3(Ce) signal trace. The oscilloscope ran in an ‘‘AND’’ mode
where traces were captured only if triggers on both signals fired within
a time window of a few nanoseconds. The high voltage was set to ∼-
1100 V so that pulses with energies up to ∼1.5 MeV could be recorded
on the oscilloscope. This voltage is slightly lower than the −1200 V used
in [3], which was found to be optimal with the same detectors. The
limited vertical acceptance range of the oscilloscope (1 V) meant that
the optimal voltage could not be used. However, in [15] the difference
in resolution between LaBr3(Ce) detectors operating at −1100 V and
-1300 V was found to be ∼15 ps. Hence the use of a slightly lower than
optimal voltage is expected to result in only a small degradation in time
resolution (<15 ps).

Data taken with a 264-kBq 60Co source were used to find the best
resolution of each algorithm at energies of ∼1.2 MeV. This source first
𝛽− decays and then emits a cascade of two 𝛾 rays of energy 1173.2- and
1332.5-keV. The halflife of the intermediate state is 0.7 ps, negligible
compared to the time resolution of the 𝛾-ray detectors. Some 3 × 105

coincident traces were captured.
A 27.0-kBq 152Eu source was used to determine how the different

algorithms perform for 𝛾-ray transitions across a wider energy range. A

Fig. 1. Example of an anode pulse captured by the 40 GS/s oscilloscope. The data
points shown are the ones analysed and these are the raw ones reflected about the
𝑥-axis, as explained in the text. The zoomed inset allows the noise present in the
baseline and at the start of the rising pulse to be observed.

total of 3.1 × 106 coincidence traces were recorded. Around 20 intense
𝛾 rays are emitted by this source, which form 𝛾−𝛾 cascades distributed
in two nuclei, 152Gd and 152Sm [16]. These cover an energy range
of 121.8 to 1299.1 keV, however several lifetimes of the intermedi-
ate states are in the 100-ps-to-ns time range. Use of these cascades
would add appreciable widths to time spectra and are unsuitable for
this study. However the 344.3-keV transition is coincident with five
transitions covering an energy range of 367.8–1299.1 keV. For four of
these 𝛾 − 𝛾 coincidences the intermediate state is the 344.3-keV one,
with a lifetime of 46.7 ps [16]. The fifth one is the 367.8–344.3-keV
coincidence which is part of a triple-𝛾 cascade with a mean lifetime
of 57.2 ps. Therefore for this set of 𝛾 − 𝛾 cascades mean lifetimes of
a similar ∼50 ps are present, allowing a qualitative comparison of the
performance of each algorithm as a function of the 𝛾-ray energy coinci-
dent with a 344.3-keV transition. The performance of these algorithms
at energies of around 511 keV is relevant to PET applications [17],
though the crystals used in the current study are optimized for lifetime
measurements of excited nuclear states.

3. Algorithms and results with 60Co

Before applying any timing algorithms the first procedure was to
extract the average value of the pulse baseline. This quantity varies
from pulse to pulse and was obtained simply by finding the average
of the first 300 sample points. These all lie at times earlier that the
first sample point registering the interaction of a 𝛾 ray, as can be seen
in Fig. 1. This shows a typical anode pulse from one of the LaBr3(Ce)
detectors captured by the oscilloscope. The data points presented were
reflected across the 𝑥-axis so that all values are positive. This was done
to simplify algorithm implementation. The energy of the deposited 𝛾-
ray signal was found using a simple running integration algorithm,
which sums all sample points found above the baseline. An energy
resolution (FWHM) of 3.4(1)% was measured at 1332.5 keV, the same
as reported in [9,10].

If the energies of both pulses were found to fall within ±20 keV of
the individual photopeak energies of interest then timing algorithms
were applied to the event. These algorithms are listed below. Examples
of gated energy spectra measured using the 60Co source are shown in
Fig. 2. Here one observes only the other transition of the 𝛾 − 𝛾 cascade
and Compton background.

In order to quantify the timing performance of each algorithm
when analysing 𝛾 − 𝛾 events, differences between the trigger times of
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Fig. 2. Energy spectra obtained with the LaBr3(Ce) detectors when energy gates are
set on one transition and then the other of the cascade.

each detector were plotted. In all cases the full-width half-maximum
(FWHM) value of the assumed Gaussian time distribution is used to
define the resolution. As the detectors are essentially identical, then
the measured FWHM can be divided by

√

2 to obtain the resolution
of each individual detector, to a good approximation. This allows a
comparison with results reported in the literature for each detector
type, for example those of [3]. Identical 𝛾-ray gates were set when
processing the data with each algorithm.

3.1. Leading edge with a 60Co source

The leading-edge algorithm produces a trigger-time marker when
the pulse trace first crosses a set threshold. For the data taken with the
60Co source, the FWHM was measured as a function of the threshold
energy. Use of interpolation between the sample points did not improve
the time resolution. This agrees with the conclusions of [8] for high
sampling frequencies. There it was reasoned that the higher density
of sampling points means that the difference between the actual de-
tector pulse and a linear interpolation between any two sample points
becomes negligible.

An example time spectrum obtained with the LaBr3(Ce) detectors
is shown in Fig. 3. The results obtained are shown in Fig. 4 where
the change in FWHM is shown as a function of the threshold value.
The maximum pulse height is around 35,000 (arbitrary units) and the
best FWHM values are obtained with the threshold set at 10–20% of
this maximum. A similar behaviour is found in analogue leading-edge
modules and in previous studies using digital leading-edge algorithms
(15%) [17]. One observes that there is a regular degradation of the
FWHM with increasing threshold values. Threshold values below ∼5%
of the pulse height produced spurious peaks due to noise. The best
resolution obtained with this algorithm was 177(4) ps.

3.2. Cubic polynomial slope fit and leading edge with a 60Co source

In order to remove any high-frequency noise contribution to the
leading-edge algorithm, the rising slope of each trace was captured
and fitted with a cubic polynomial function. This function was the
lowest order polynomial found to accurately reproduce the rising edge
of the detector pulses, in line with the results of [18]. A leading edge
threshold was then applied to the fit function describing each individual
pulse, producing a reference time. Fits were applied across rising slopes
varying from 10%–90%, 5%–90%, 5%–50% and 5%–30% of the pulse

Fig. 3. Example time spectrum measured with the leading edge algorithm and a 60Co
source.

Fig. 4. Full width half maximum (FWHM) of time signals obtained with a leading-edge
algorithm as a function of the threshold value for a single detector, de-convoluted from
the measured distribution.

peak height. The best results were obtained for fits over the range 5%–
90% and 5%–50% of pulse height, where equivalent time resolutions,
within errors [143(3) ps], were obtained. The threshold parameter was
also varied until the smallest FHWM was found. A value close to the
one in Section 3.1 was optimal. The results are shown in Fig. 5. One
notes that it is possible to apply this algorithm with a lower threshold
value than for the raw signals of Section 3.1, due to the absence of
high-frequency noise on the fitted polynomial function.

The digital leading-edge algorithm of Section 3.1 and the cubic poly-
nomial slope fit, followed by a leading edge trigger, used here trigger on
signals in a very similar manner. A comparison of the results obtained
by each allows an estimation of the influence of higher frequency noise
harmonics on the signal time resolution, because high-frequency noise
is smoothed out in the fit analysis. As noise contributions add in quadra-
ture, then one obtains FWHMℎ𝑖𝑔ℎ𝑓𝑟𝑒𝑞=104(3) ps for the high-frequency
noise component, a significant amount.

3.3. Constant fraction with a 60Co source

The constant fraction (CFD) algorithm used in the analysis of the
detector signals is the digital equivalent of the ones used in analogue
modules. An input signal is duplicated, inverted and delayed. The
original signal is then attenuated by a fraction 𝑓 and the zero-crossing
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Fig. 5. Full width half maximum (FWHM) of time signals obtained with a cubic slope-
fit algorithm as a function of the threshold value for a single detector, de-convoluted
from the measured distribution.

Fig. 6. Full width half maximum (FWHM) of a digital constant-fraction algorithm as
a function of the fraction of the attenuated signal for a single detector, de-convoluted
from the measured distribution. A delay of 6.25 ns was used.

of the sum of these two signals corresponds to the reference time. The
CFD algorithm is written as

𝐶𝐹𝐷[𝑖] = 𝑓 × 𝑉 [𝑖] − 𝑉 [𝑖 − 𝑑𝑒𝑙𝑎𝑦] (1)

where 𝑓 is the fraction of the attenuated signal, 𝑉 [𝑖] is the pulse height
of the sample at bin number 𝑖 and 𝑑𝑒𝑙𝑎𝑦 is the time by which the
duplicated signal is retarded [19]. This algorithm was tested over a
range of values of 𝑓 , from ∼0.2 to 0.4, corresponding to the ones used
in analogue modules. Values of 𝑓 below 0.15 could not be applied
due to noise. The results are shown in Fig. 6. Similarly the 𝑑𝑒𝑙𝑎𝑦
parameter was varied until an optimal result was obtained. The best
delay values are close to the peak rise time, again in line with the
settings of an analogue CFD. The performance of the algorithm is
relatively insensitive to changes in delay times over a large range of
values, as shown in Fig. 7. A time resolution of 178(4) ps was the best
one obtained with this algorithm.

3.4. Autocovariance with averaged pulse-shapes with a 60Co source

For each pair of applied energy gates pulses in each detector were
summed and then averaged. This produced approximately ‘‘ideal’’
pulses, almost noise free, though still retaining any subtle systematic
inflexions inherent to each detector pulse.

Fig. 7. Full width half maximum (FWHM) of a digital constant-fraction algorithm as a
function of the delay time of the duplicated signal for a single detector, de-convoluted
from the measured distribution. A fraction of 𝑓=0.18 was used.

Fig. 8. Full width half maximum (FWHM) of a digital autocovariance algorithm as a
function of upper limit of the peak signal voltage for a single detector, de-convoluted
from the measured distribution.

Once the set of average pulses had been obtained then each pulse in
a given detector, falling within the range of the energy gate, was then
compared to it. This was done by calculating the variance between the
rising slope of a pulse of a given event and the average one, within
the same height interval, using Welford’s algorithm [20]. The event
pulse was then shifted by one sample and the variance calculated again.
Once the variance had been calculated across a set range of shifts,
the minimum variance was obtained, allowing the ‘‘lag’’ between the
individual pulse and the average one to be determined. The lag value
can then be used to determine a trigger time. It is worth noting that
this algorithm has no threshold dependence.

The vertical range over which the variance was calculated was
changed and the optimal one was found to be 5%–20% of the pulse
height, giving a resolution of 155(3) ps. This is shown in Fig. 8, where
resolution is plotted as a function of analysed pulse height. Equivalent
results were obtained when comparing 20 channels of the event pulse
to the average one, once a low-energy threshold was crossed. This latter
method is less computationally intensive.

The method described here is practically identical to the ‘‘Mean
PMT pulse model’’ used by Aykac et al. to analyse pulses from LSO
cyrstals [21]. We note that a procedure with a similar philosophy has
been used for an entirely different 𝛾-ray spectroscopy application. The
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Table 1
Summary of best values of FWHM achieved for each algorithm with
a60Co source and a 10-bit 40 GS/s oscilloscope.
Leading edge Leading edge slope fit CFD Autocovariance

177(4) ps 143(3) ps 178(4) ps 155(3) ps

shapes of pulses recorded from the segmented outer contacts of 36-
fold AGATA Ge detectors are compared to those found in a library of
measured interactions [22]. This allows the interaction position of 𝛾
rays to be found with a precision of a few mm in a large-volume Ge
detector.

3.5.60Co Source results summary and comparison with literature

A summary of the results obtained with each algorithm is shown in
Table 1. As ∼1000 𝛾−𝛾 coincidences were analysed, then the statistical
contribution to the error ( 𝜎

√

𝑛
) is around 2 ps. These results can be com-

pared to the time resolutions reported in the literature using analogue
pulse-processing electronics. A study of the performance of conical
LaBr3(Ce) detectors, with the same dimensions as used here, reported a
FWHM value of 110(3) ps with a 60Co source [3]. The results obtained
with the cubic polynomial slope fit are 30(1)% worse. In a recent study
using a 16-bit 5 GS/s digitizer with the same LaBr3(Ce) detectors a time
resolution of 106(1) ps was reported, using the same type of radioactive
source and a timing algorithm developed using machine learning [10].
This result surpasses all the ones obtained in the present work. In [8] a
spline interpolation with a sinc function of the pulse rising slope using
a 14-bit, 0.5 GS/s digitizer gave results equivalent to those reported
using analogue electronics [3] for ‘‘1×1’’ LaBr3(Ce) crystals [97 ps
versus 98(2) ps]. This shows that a higher sampling frequency does not
necessarily lead to improved time resolution if the vertical resolution
is low and these points are discussed below.

4. Sampling frequency

The performance of each algorithm was tested as a function of sam-
pling frequency, using the data taken with the 60Co source. The results
are shown in Fig. 9. Optimal parameters at sampling rates of 40 GS/s,
reported in previous sections were used throughout. Unsurprisingly
the best performance is found at a sampling frequency of 40 GS/s,
though little degradation of the FWHM is seen at 20 GS/s. At sampling
frequencies of 4 or 5 GS/s, the resolution is typically 30–60% worse.
The results obtained in the present work differ from the conclusions of
Aykac et al. [21] who studied the performance of small LSO detectors
for PET applications. There they found that optimal digital algorithm
performance was already attained at a sampling rate of 4 GS/s. Simi-
larly Warburton and Henning [8] and Nakhostin et al. [10] were able
to obtain results equivalent to the best ones achieved with analogue
systems, though at lower frequencies of 0.5 and 4 GS/s using digitizers
with 14 and 16 bits. This points towards vertical resolution being a
more important parameter than sampling speed in the GS/s domain
for LaBr3(Ce) detectors. More formally the vertical resolution (number
of bits) must be high enough that the quantization error is below the
electronic noise of the signal [18].

5.152Eu data

The evolution of the peak FWHM as a function of energy, measured
with the 152Eu source is shown in Fig. 10. Here one gate was set on the
344.3-keV 𝛾-decay of 152Gd and the peak FWHM was measured when
the second gate was set at other photopeak energies (367.8, 411.1,
778.9, 1089.7 and 1299.1 keV). There were around 1000 counts in each
coincidence time spectrum. The 344.3–1089.7-keV data points were
removed from the fit as they were found to be systematically higher

Fig. 9. Full width half maxima (FWHM) of time peaks extracted with different digital
algorithms as a function of sampling frequency for a single detector, de-convoluted
from the measured distribution.

Fig. 10. Measured peak full width half maximum (FWHM) values as a function of
transitions found in coincidence with the 344.3-keV 𝛾 ray emitted following the decay
of a 152Eu source.

than the trend lines, likely due to contamination with the 1085.9-keV
transition in 152Sm.

In Fig. 10 the autocovariance function is seen to have the best
resolution across the range of energies studied. This energy range is
typical of fast-timing experiments aiming to study the lifetimes of
excited states in the 10s-of-ps to ns time range.

An important parameter in fast-timing measurements is the prompt-
response difference (PRD) [6,7,16]. This function is used to determine
the zero-time position as a function of energy and it depends on the
settings of the analogue discriminator used. The ‘‘walk’’ of this zero-
time position typically changes by a few hundred picoseconds over an
energy range of 100 keV to 1.5 MeV. Uncertainties in the PRD generally
limit the precision of high-statistics fast-timing measurements, hence
the interest in obtaining PRD functions which are as flat as possible [23,
24]. Despite the 3.1 × 106 coincident events recorded with the 152Eu
source there were insufficient statistics to reliably determine the PRDs
of the all digital algorithms tested here.

6. Conclusion

The time resolutions obtained with four different timing algorithms
have been measured with a pair of 38-mm long, 38-mm wide truncated-
cone shaped LaBr3(Ce) fast-timing detectors using a 10-bit, 40 GS/s
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oscilloscope. The time resolution obtained with a cubic polynomial
slope fit leading-edge algorithm gave the best result with a 60Co
source [143(3) ps], though this is 30(1)% worse than values achieved
using analogue pulse-processing electronics. The performance of the
autocovariance function was slightly inferior [155(3) ps], but better
than the leading edge [177(4) ps] and constant-fraction [178(4) ps]
algorithms. The autocovariance function was found to have the best
performance for coincidences in the energy range 344.3–1299.1-keV.
This may be because the cubic polynomial slope fit algorithm used
relies on a leading-edge threshold trigger, with settings optimized for
60Co lines. The performance of this algorithm may therefore degrade
when applied to lower-energy 𝛾-rays. Reducing the sampling frequency
to 20 GS/s was found to only slightly degrade the time resolution of
these algorithms. The results obtained in the present work are a few
tens-of-picoseconds worse than those obtained using a 16-bit, 5 GS/s
digitizer module [106(1) ps] [10], demonstrating that high vertical
resolution is more important than sampling speed in the GS/s domain
when using these detectors.
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