Infrared Physics & Technology 88 (2018) 97-101

Contents lists available at ScienceDirect

Infrared Physics & Technology

journal homepage: www.elsevier.com/locate/infrared

Rui Wang ^{a,b}, Xingbin Huang ^{a,b}, Yichuan Wang ^{a,b}, Runsheng Huang ^{a,b}, Peixiong Zhang ^{a,b,*}, Siqi Zhu ^{a,b}, Hao Yin ^{a,b}, Zhenqiang Chen ^{a,b,**}, Yi Zheng ^c, Guiyao Zhou ^d

^a Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou, Guangdong 510630, China

^b Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China

^c School of Science, Beijing Jiaotong University, Beijing 100044, China

^d School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China

HIGHLIGHTS

• An intense 3.9 µm emission in Ho:YAP crystal was observed for the first time.

• The spectral parameters of Ho:YAP crystal were calculated.

 \bullet Optical properties of Ho:YAP as 3.9 μm laser crystal were evaluated.

ARTICLE INFO

Article history: Received 13 November 2017 Accepted 14 November 2017 Available online 15 November 2017

Keywords: 3.9 μm emission Optical spectroscopy Optical materials Crystal growth

ABSTRACT

The Ho³⁺-doped YAlO₃ (YAP) crystal was successfully grown using the Czochralski technique. An intense 3.9 µm emission in Ho:YAP crystal was observed for the first time. The spectroscopic parameters were determined by Judd-Ofelt theory based on the measured polarized absorption spectra. The intensity parameters $\Omega_{2,4,6}$, exited state lifetimes, branching ratios, and emission cross-sections were calculated. Under optical pumping at 890 nm, an intense 3.9 µm emission with a bandwidth of 190 nm at full width half maximum was observed. The maximum emission cross section of Ho:YAP crystal is estimated to be 0.302 × 10⁻²⁰ cm² at 4096 nm. The decay lifetime of the level was measured to be 0.103 ms. We propose that the Ho:YAP crystal may be a promising material for 3.9 µm laser applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

 $3-5 \ \mu m$ mid infrared (MIR) laser are useful a variety of scientific and technical applications, include in atmospheric monitoring, medical surgery and scientific research [1–3]. Furthermore, it can applications in high-quality pump sources for longer wavelength MIR lasers and optical parametric oscillators [4,5]. It is well known that Ho³⁺ is an efficient ion for obtaining 3.9 μm laser emissions due to Stark levels of the ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$ states transition [6]. As can be seen from the energy level diagram of trivalent holmium [7]. This ion has also several high lying metastable levels giving rise to transitions at various wavelengths from infrared (IR) to ultraviolet (UV) region [8]. The possibility of obtaining laser emission from Ho³⁺ at ~3.9 μm mainly depends on the choice of host crystals. The host material for MIR lasers is expected to possess low phonon energy,

** Corresponding author.

because which can decrease the non-radiative losses efficiently and thus increasing the quantum efficiency of ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$ transition. To date, Ho³⁺ lasing ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$ transition has been demonstrated in fluoride compounds such as PbF_2 crystals (257 cm⁻¹) [9], YLF crystals (442 cm^{-1}) [10], BYF crystals (420 cm^{-1}) [11]. However, up to now, there is no research about Ho³⁺ ions doped oxide crystal with 3.9 µm laser emission. Fortunately, the maximum phonon energy of Yttrium Aluminum Perovskite (YAP) is only \sim 570 cm⁻¹ [12], such low phonon vibrational frequency leads to a reduced nonradiative decay rates between excited states of Ho³⁺ with small energy separation, and finally ensures 3.9 µm laser emission. Moreover, fluoride crystals must be grown in an inert atmosphere to avoid contamination from outside environment, and also their poor mechanical properties seriously limit the enhancement of MIR laser output power and efficiency [13]. Compared with fluoride crystals, oxide crystals are much easier to grow with higher optical quality, and they possess much better physical properties [14].

YAP crystal is a biaxial crystal with the orthorhombic system, the yttrium ions in sites of Cs (monoclinic) symmetry [11]. The

^{*} Corresponding author at: Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou, Guangdong 510630, China.

E-mail addresses: pxzhang@siom.ac.cn (P. Zhang), tzqchen@jnu.edu.cn (Z. Chen).

general structure of perovskite crystals can be expressed as ABX₃, where elements A and B occupy, respectively. The vertexes and the central site of the body-centered tetrahedron, while X anions. situated on the six faces of the tetrahedron, form an octahedron around the central site B [13]. The cell parameters are a = 5.330 Å, b = 7.375 Å, and c = 5.180 Å, Its density is 5.35 g/cm³ [15]. Compared to the original YAG, YAP is also derived from the binary Y₂O₃-Al₂O₃ system and they have similar physical characteristics such as high mechanical strength, sufficient hardness and significant thermo-conduction [16]. In addition to these advantages, it has the advantage of low phonon energy compared to YAG (800 cm^{-1}) [17]. In this work, an intense 3.9 µm emission in a Ho:YAP crystal under a 890 nm pump is reported for the first time, to the best of our knowledge. The spectroscopic investigations of \sim 3.9 μ m emission in a Ho:YAP crystal were investigated to demonstrate its future applications in MIR lasers.

2. Experimental

Large size single crystals can be obtained by the Czochralski (CZ) method with an intermediate frequency induction heating system. Oxide powders of Ho₂O₃ (4N), Y₂O₃ (4N) and Al₂O₃ (4N) were used as starting materials. The concentrations of Ho introduced in the raw materials were 1 at.% which were mixed adequately for 20 h and pressed into disks, followed by heating in air for 15 h at 1200 °C. The bulks were loaded into an iridium crucible for crystal growth, the growth atmosphere was N₂, and temperature was set to 1900 °C. The crystal growth was carried out with a *a*-cut YAP seed. A pulling rate of 1.2 mm/h and rotation rate of 15-20 rpm were adopted during the growth. To prevent the crystal from cracking, it was cooled to room temperature very slowly with a rate of 30–40 °C/h, after its growth size Φ 28 × 40 mm² was obtained. The real dopant of Ho³⁺ ions in YAP crystal (N_{Ho}) was calculated to be 1.335×10^{20} ions/cm³. The concentrations of Ho ions were detected by inductively coupled plasmaatomic emission spectrometry (ICP-AES) analysis. The effective segregation coefficient K for the Ho^{3+} is calculated to be 0.785.

3. Spectral analyses

The sample was cut along the as-grown Ho:YAP crystal into 10 mm \times 10 mm \times 5 mm and each face of the sample is perpendicular to one of the three principal crystallographic directions a, b, c, respectively. The six faces of sample were mechanically polished for absorption spectra measurements, fluorescence spectrum and the fluorescence decay lifetime measurements. The absorption spectrum of a Ho³⁺ YAP crystal in the range of 300–2300 nm was measured by Perkin–Elmer UV–VIS-NIR Spectrometer (Lambda 900). The fluorescence spectra in the wavelength of 3700–4300 nm and the fluorescence decay curves were recorded by Edinburg Instruments FLS920 and FSP920 spectrophotometers. All measurements were done at room temperature.

The polarization absorption spectra in the range from 300 to 2300 nm are shown in Fig. 1. The absorption peaks in the three directions are similar and the positions of absorption peaks are slightly different. The characteristic absorption bands corresponding to transitions from the ground state to the excited states of Ho³⁺ are marked. It is obvious to see there are six main absorption bands of Ho³⁺ ions, which corresponded to the electronic transitions from ground ⁵I₈ level to ⁵I₇, ⁵I₆, ⁵F₅, ⁵F₄ + ⁵S₂, ⁵G₆ and ⁵G₅ levels. Fig. 2 shows the simplified energy level diagram of Ho³⁺ doped YAP crystal. Under the excitation of 890 nm laser pump, the Ho³⁺ ion is excited to the state ⁵I₅, ions in the ⁵I₅ level decay radiatively to ⁵I₆ with ~3.9 µm emission.

Fig. 1. Polarized absorption spectra of Ho:YAP crystal at room temperature.

Fig. 2. The simplified energy level diagram of Ho³⁺ doped YAP crystal.

The J–O theory has become a standard tool for evaluating the spectroscopic parameters of rare-earth ions in crystals [18,19]. The calculated average wavelength and the experimental and calculated line strengths (*S*) are presented in Table 1. A lower root-mean-square RMS confirms a better consistency of our fitting, the root-mean-square (RMS) error deviation of intensity parameters was 0.493×10^{-20} cm² for *a* polarization, 0.456×10^{-20} cm² for *b* polarization, 0.537×10^{-20} cm² for *c* polarization. Which indicates a good result between the experimental and calculated spectral intensities. The calculated radiative transition rates, branching ratios and radiative lifetimes for different transition levels of Ho: YAP crystal are listed in Table 2.

And then, Table 3 provides spectroscopic parameters $\Omega_{2,4:6}$ of Ho³⁺ ion for each polarization, and shown in with other Ho³⁺ doped crystals for comparison. For the Ho:YAP crystal, the effective intensity parameters $\Omega_{t,eff}$ should be $\Omega_{t,eff} = (\Omega_{t,a} + \Omega_{t,b} + \Omega_{t,c})/3$ [20]. Ω_2 parameter is dependent on the local environments and the cova-

lent chemical bonding, the high value of Ω_2 means that this crystal has the low asymmetry and the strong covalence characteristics. The value of Ω_4/Ω_6 determines the spectroscopy quality of the materials, The Ω_4/Ω_6 of Ho:YAP is higher than YLF and YAG, which were indicated to be prospective Ho³⁺ doped laser media.

The fluorescence spectra of the Ho: YAP crystals are shown in Fig. 3. A broad emission band from 3700 nm to 4300 nm was observed corresponding to ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$ transition. It is obvious to see that there are two emission bands around 3950 nm and 4096 nm, which are assigned to the Ho³⁺ transition of ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$. The emission cross sections are calculated by the F-L equation [24]:

$$\sigma_e(\lambda) = \frac{\beta \lambda^3 I(\lambda)}{8\pi c n^2 \tau_{rad} \int \lambda I(\lambda) d\lambda}$$

where β is the branching ratio, $I(\lambda)$ is the emission intensity at wavelength λ , c is the vacuum speed of light, n is the refractive index and τ_r is the radiative lifetime. The maximum emission cross

The average wavelength (λ), Polarized experimental and calculated line strengths (S) of Ho:YAP crystal.

Excited states	E//a			E//b			E//c		
Ground state ${}^{5}I_{8}$	Peak (λ)	Scal (10^{-20})	Sexp (10 ⁻²⁰)	Peak (λ)	Scal (10^{-20})	Sexp (10 ⁻²⁰)	Peak (λ)	Scal (10^{-20})	Sexp (10^{-20})
⁵ I ₇	1933	3.314	3.275	1933	2.934	2.735	1931	3.573	3.506
⁵ I ₆	1153	1.431	1.163	1151	1.269	1.227	1152	1.541	1.615
⁵ F ₅	649	2.429	2.299	647	2.097	1.839	650	2.644	2.701
${}^{5}F_{4} + {}^{5}S_{2}$	542	2.094	2.061	541	1.828	2.061	543	2.269	1.786
⁵ F ₃	487	0.651	1.223	487	0.579	1.07	486	0.699	1.223
⁵ G ₆	455	4.581	4.583	454	4.252	4.256	456	5.237	5.238
⁵ G ₅	421	0.574	1.327	520	0.498	1.238	422	0.624	1.592
${}^{5}G_{4}$, ${}^{2}K_{7}$	388	0.175	0.557	386	0.151	0.633	389	0.191	0.612
${}^{5}\text{H}_{5}$ + ${}^{3}\text{H}_{6}$ + ${}^{5}\text{G}_{2}$	363	0.007	0.103	363	0.007	0.072	365	0.008	0.059

Table 2

Table 1

Calculated radiative transition rates, branching ratios and radiative lifetimes for different transition levels of Ho:YAP crystal.

Start levels	Terminal levels	λ (nm)	A_{ed} (S ⁻¹)	β (%)	$\tau_{\text{rad}}(ms)$
⁵ F ₅	⁵ I ₈ ⁵ I ₇ ⁵ I ₆ ⁵ I ₅ ⁵ I ₄	645 960 1447 2298 4347	3668 862.908 178.644 13.471 0.13	77.7 18.3 3.8 0.28 0.002	0.211
⁵ I ₄	⁵ I ₈ ⁵ I ₇ ⁵ I ₆ ⁵ I ₅	760 1233 2169 4854	16.325 80.624 65.017 9.257	9.5 47.1 38 5.4	5.84
⁵ I ₅	⁵ I ₈ ⁵ I ₇ ⁵ I ₆	900 1650 3906	115.264 157.389 11.331	40.6 55.4 4.0	3.521
⁵ I ₆	⁵ I ₈ ⁵ I ₇	1150 2857	322.564 32.475	90.1 9.1	2.817
⁵ I ₇	⁵ I ₈	1933	136.354	100	7.334

Table 3

The J-O intensity parameters of Ho3+-doped crystals.

Crystals	$\Omega_2 (10^{-20} \mathrm{cm}^2)$	$\Omega_4 (10^{-20} \mathrm{cm}^2)$	$\Omega_6 (10^{-20} \mathrm{cm}^2)$	Ω_4/Ω_6	Ref.
Ho:YVO ₄	7.5	4.0	1.9	2.1	[21]
Ho:BaY ₂ F ₈	6.74	1.20	0.66	1.818	[11]
Ho:PbF ₂	0.41	1.50	0.86	1.744	[22]
Ho:YAG	0.101	2.086	1.724	1.209	[23]
Ho:YLF	1.161	2.224	2.079	1.069	[14]
Ho:YAP $\Omega_{t,a}$	1.087	3.18	1.879	1.692	This work
$\Omega_{t,b}$	1.166	2.68	1.672	1.603	
$\Omega_{t,c}$	1.33	3.5	2.017	1.735	
$\Omega_{ m t,eff}$	1.194	3.12	1.856	1.681	

Fig. 3. Fluorescence spectrum of Ho:YAP crystal in the wavelength of 3700–4300 m.

Fig. 4. The fluorescence decay curve of the $^5\mathrm{I}_5$ level in Ho:YAP crystal at room temperature.

Table 4

Comparison of the optical spectroscopic parameters of some ${\rm Ho^{3^+}}{\rm -doped}$ laser crystals.

Crystals	The emission cross section (σ_e)	${}^5\mathrm{I}_5 \rightarrow {}^5\mathrm{I}_6 \ \beta \ (\%)$	$\tau_{meas}(ms){}^5I_5$	Ref.
Ho:YLF	$\begin{array}{c} {\sim}0.40\times10^{-20}\ cm^2\\ 0.437\times10^{-20}\ cm^2\\ 0.302\times10^{-20}\ cm^2 \end{array}$	3.48	0.018	[25]
Ho:BYF		5.7	0.052	[11]
Ho:YAP		4.0	0.103	This work

section of Ho:YAP crystal is estimated to be 0.302×10^{-20} cm² at 4096 nm, the FWHM of this emission band is 190 nm around 4096 nm spectral region. This broad and smooth emission spectra indicates a potential for a wide tuning range and short pulse generation for the crystal.

To further explore the energy interaction mechanism, the fluorescence decay time of the ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$ transition has been measured by exciting the sample with 890 nm and emission at 4096 nm and is shown in Fig. 4. The experiment curve can be well fitted to single exponential functions. The measured lifetime of the ${}^{5}I_{5}$ manifold in the Ho:YAP crystal is 0.103 ms. Table 4 presents the comparison of several important spectroscopic parameters of several Ho $^{3+}$ -doped laser crystals, it is clear to see that the branching ratios, emission cross-section and fluorescence lifetime of Ho:YAP crystal are comparable with other Ho $^{3+}$ doped crystals, such as Ho:YLF and Ho:

BYF, which have been demonstrated as effective laser hosts for Ho³⁺ lasing ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$ transition. Moreover, the measured lifetime of Ho:YAP crystal are higher than those of Ho:YLF and Ho:BYF, which indicates the YAP crystal can be used as a good host candidate material for ~3.9 μ m laser applications.

4. Conclusion

In conclusion, high-quality Ho:YAP crystals were successfully grown using Czochralski method. The polarized absorption spectra, unpolarized fluorescence spectrum as well as decay curves are measured at room temperature. Under the excitation of 890 nm laser pump, one intense 3.9 µm laser emission from 3700 to 4300 nm on the phonon terminated transition ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$ of Ho: YAP was demonstrated for the first time. The J-O intensity parameters $\Omega_{2,\text{eff}}$, $\Omega_{4,\text{eff}}$ and $\Omega_{6,\text{eff}}$ are calculated to be $1.194 \times 10^{-20} \text{ cm}^2$, $3.12 \times 10^{-20} \text{ cm}^2$ and $1.856 \times 10^{-20} \text{ cm}^2$, respectively. The maximum emission cross-section is $0.302 \times 10^{-20} \text{ cm}^2$ at 4096 nm, and the FWHM of this emission band is 190 nm. The fluorescence lifetime of the ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$ transition of Ho³⁺ was determined to be 0.103 ms. With these favorable properties, the Ho:YAP crystal is a promising material for ~3.9 µm laser applications under the excitation of 890 nm laser pump.

Acknowledgment

The National Key Research and Development Program of China (2017YFB1104500); National Natural Science Foundation of China (NSFC) (51702124, 61735005, 11704155); Guangdong Project of Science and Technology Grants (2016B090917002, 2016B090926004); Guangzhou Union Project of Science and Technology Grants (201604040006).

References

- [1] H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, B. Peng, Host dependence of spectroscopic properties of Dy³⁺-doped and Dy³⁺, Tm³⁺-codped Ge-Ga-S-Cdl₂ chalcohalide glasses, Opt. Express 17 (2009) 15350–15358.
- [2] I.T. Sorokina, K.L. Vodopyanov, Solid-State Mid-Infrared Laser Sources, Springer Science & Business Media, 2003.
- [3] Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, C. Tu, Activation effect of Ho³⁺ at 2.84 μm MIR luminescence by Yb³⁺ ions in GGG crystal, Opt. Lett. 38 (2013) 3988–3990.
- [4] B. Dickinson, P. Golding, M. Pollnau, T. King, S. Jackson, Investigation of a 791nm pulsed-pumped 2.7-µm Er-doped ZBLAN fibre laser, Opt. Commun. 191 (2001) 315–321.
- [5] J. Heo, Y.B. Shin, Absorption and mid-infrared emission spectroscopy of Dy³⁺ in Ge-As (or Ga)-S glasses, J. Non-Crystal. Solids 196 (1996) 162–167.
- [6] J. Schneide, C. Carbonnier, U.B. Unrau, Characterization of a Ho³⁺-doped fluoride fiber laser with a 3.9-μm emission wavelength, Appl. Opt. 36 (1997) 8595–8600.
- [7] G.H. Dieke, H. Crosswhite, The spectra of the doubly and triply ionized rare earths, Appl. Opt. 2 (1963) 675–686.
- [8] M. Malinowski, Z. Frukacz, M. Szuflińska, A. Wnuk, M. Kaczkan, Optical transitions of Ho³⁺ in YAG, J. Alloys Compd. 300 (2000) 389–394.
- [9] P. Zhang, J. Yin, B. Zhang, L. Zhang, J. Hong, J. He, Y. Hang, Intense 2.8 μ m emission of Ho³⁺ doped PbF₂ single crystal, Opt. Lett. 39 (2014) 3942–3945.
- [10] R. Stutz, H. Miller, K. Dinndorf, A. Cassanho, H.P. Jenssen, High pulse energy 3.9 μm lasers in Ho: BYF, in: SPIE Photonics West, 2004.
- [11] J. En-Cai, L. Qiang, N. Ming-Ming, L. Hui, H. Yu-Xi, G. Zhou-Guo, G. Ma-Li, Spectroscopic properties of heavily Ho³⁺-doped barium yttrium fluoride crystals, Chin. Phys. B 24 (2015) 094216.
- [12] H. Yang, Z. Dai, Z. Sun, Upconversion luminescence and kinetics in Er³⁺: YAlO₃ under 652.2 nm excitation, J. Lumin. 124 (2007) 207–212.
- [13] A. Casu, P.C. Ricci, A. Anedda, Structural characterization of Lu0. 7YO. 3AIO₃ single crystal by Raman spectroscopy, J. Raman Spectrosc. 40 (2009) 1224– 1228.
- [14] B.M. Walsh, G.W. Grew, N.P. Barnes, Energy levels and intensity parameters of Ho³⁺ ions in GdLiF₄, YLiF₄ and LuLiF₄, J. Phys.: Condens. Matter 17 (2005) 7643.
- [15] J. Chen, G. Zhao, D. Cao, Q. Dong, Y. Ding, S. Zhou, Computer simulation of intrinsic defects in YAIO₃ single crystal, Phys. B: Condens. Matter 404 (2009) 3405–3409.
- [16] B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, Crystal growth and yellow emission of Dy: YAIO₃, Opt. Mater. 72 (2017) 208–213.

- [17] S.A. Payne, L.K. Smith, W.F. Krupke, Cross sections and quantum yields of the 3 μ m emission for Er³⁺ and Ho³⁺ dopants in crystals, J. Appl. Phys. 77 (1995) 4274–4279.
- [18] G. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37 (1962) 511–520.
- [19] B. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev. 127 (1962) 750.
- [20] L. Zundu, C. Xueyuan, Z. Tingjie, Judd-Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements, Opt. Commun. 134 (1997) 415–422.
- [21] S. Gołvab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Świrkowicz, W. Ryba-Romanowski, Spectroscopy of YVO4: Ho³⁺ crystals, Appl. Phys. B: Lasers Opt. 74 (2002) 237–241.
- [22] P. Zhang, Z. Chen, Y. Hang, Z. Li, H. Yin, S. Zhu, S. Fu, 2 um emission of PbF₂ single crystal co-doped with Ho³⁺/Yb³⁺ ions, Infrared Phys. Technol. 82 (2017) 178–182.
- $\mbox{[23]}$ B.M. Walsh, G.W. Grew, N.P. Barnes, Energy levels and intensity parameters of Ho^{3*} ions in $Y_3Al_5O_{12}$ and $Lu_3Al_5O_{12}$, J. Phys. Chem. Solids 67 (2006) 1567–1582.
- [24] B. Aull, H. Jenssen, Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections, IEEE J. Quant. Electron. 18 (1982) 925–930.
- [25] M. Eichhorn, Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions, Appl. Phys. B 93 (2008) 269.