High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode

Qinglei Ma *, Haiding Mo, Jay Zhao
Advanced Optowave Corporation, 105 Comac St, Ronkonkoma, NY 11779, United States

A B S T R A C T

A model is developed to calculate the optimal pump position for end-pump configuration. The 808 nm wing pump is employed to spread the absorption inside the crystal. By the optimal laser cavity design, a high-energy high-efficiency Nd:YLF laser operating at 1053 nm is presented. In cw operation, a 13.6 W power is obtained with a slope efficiency of 51% with respect to 30 W incident pump power. The beam quality is near diffraction limited with M² ~ 1.02. In Q-switch operation, a pulse energy of 5 mJ is achieved with a peak power of 125 kW at 1 kHz repetition rate.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Diode-pumped-solid-state (DPSS) lasers have attracted considerable attention in recent years. [1–4] Their wide applications have stepped into various areas, such as material processing, medical treatment, etc. [5,6] Among the Nd-based DPSS lasers, Nd:YLF lasers are of special interest, especially in high energy Q-switched lasers operating at low repetition rates. The uniaxial Nd:YLF crystal is of natural birefringence, which overwhelms thermally induced birefringence eliminating the thermal depolarization problem of isotropic crystals like Nd:YAG. [7,8] Moreover, its longer fluorescence lifetime (∼480 μs), offering higher capability of energy storage, make it more competitive in high energy pulse lasers compared with Nd:YAG (∼230 μs) and Nd:YVO₄ (∼100 μs) crystals. In addition, Nd:YLF operating at 1053 nm corresponding to σ polarization exists weak thermal lensing effect because the negative temperature dependence of the refractive index partially compensates the positive temperature dependence of thermal expansion coefficient. [9,10] The net result is that the power of the thermal lens in Nd:YLF is typically a factor of 17 smaller than in Nd:YAG under comparable pumping conditions. [11] The relatively low thermal lensing effect which typically coincides with reduced thermal aberrations makes it possible to generate near diffraction-limited beam quality.

End-pumped Nd:YLF lasers have been widely studied because the end pumping configuration has the advantage of excellent mode match, leading to good beam quality and high conversion efficiency. [12–15] The pump optimization for end-pumped configuration has been studied for a long time. [16–18] However, there is no effective pump model reported to investigate the optimal end-pump position, so as to improve laser output performance. Most of the previous works were talking about only the mode-match to improve the overlap efficiency so as to improve the conversion efficiency. However, based on our experience, the pump position is also crucial to the laser efficiency in addition to the mode match. For end-pump structure it exists an optimal pumping position where the maximum output is achieved. If the pump position is not at the optimal point, the output is always relatively lower no matter how good the mode match is achieved. Besides, though the weak thermal lensing effect of Nd:YLF seems to be a benefit to its power scaling, the Nd:YLF crystal has a tendency to fracture under high pump density. The fracture limit for Nd:YLF is ∼5 times lower than that for Nd:YAG. [19] In end-pumped Nd:YLF lasers, the pump power is incident into crystals from a small volume, which makes it easier to fracture. Therefore, reducing the stressed fracture should be considered in the cavity design of end-pumped Nd:YLF lasers.

In this paper, we firstly build up a model to investigate the total gain inside the crystal with different pump positions. Through this model, the optimal position is determined, at which the Nd:YLF obtains the largest gain from pump. In order to decrease the stressed fracture of Nd:YLF crystal, the wavelength at absorption peak ~797 nm is not used. On the contrary, a low absorption coefficient of 808 nm is employed as the pump, which is typically called ‘wing pump’. Besides, a relatively longer but lower Nd-doped (0.5%) crystal is used to spread the absorption. Both the wing pump scheme and low Nd-doped crystal reduce the up-conversion and spread out the absorption and thermal load longitudinally in the crystal, increasing the thermal fracture pump limit. Moreover, in order to achieve near diffraction-limited beam quality and high conversion efficiency, the laser cavity is precisely designed for good mode match. Eventually, a 13.5 W 1053 nm Nd:YLF
laser with near-diffraction-limited beam \((M^2 = 1.02)\) is obtained under continuous wave (cw) operation at 30 W 808 nm pump. The optical to optical efficiency and slope efficiency with respect to the incident pump power are \(-45\%\) and \(-51\%\), respectively. Under the Q-switch operation, a high pulse energy of 5 mJ is obtained at 1 kHz repetition rate.

2. Experimental setup

2.1. Setup of Nd:YLF laser

The experimental configuration of Nd:YLF laser is shown in Fig. 1. A simple folded cavity structure is employed consisting three mirrors. The cavity length is 720 mm. M1 is the pump mirror with a curvature of \(R = 500 \text{ mm}\), coated with high reflectivity at 1053 nm and anti-reflective coating at 808 nm. M2 has a curvature of \(R = 400 \text{ mm}\) with high reflectivity at 1053 nm. M3 is the output coupler of 1053 nm laser. Under the cw operation, \(T = 15\%\) is employed to achieve optimal output. But in Q-switch operation, \(T = 35\%\) is used in order to avoid damaging dielectric coatings from high peak power laser pulse. The 0.5% doped Nd:YLF crystal (CASTECH Inc) is 3 mm-diameter by 35 mm-length. The Nd:YLF is a-axis-cut, and its optical axis is perpendicular to the plane of the Nd:YLF crystal.

2.2. Optimal pump position

The diode laser is focused into the rod after the lens barrel system, as is shown in Fig. 2. The spot size diameter at focal point is measured to be 0.96 mm. The total gain of pump varies when the focal point is at different positions giving various pumping volume inside the crystal. The optimal pump position \(z_0\) can be determined where the pumping laser generates the maximum gain inside the crystal.

2.3. Beam mode

Good mode matching between the pump profile and laser profile enhances the optical conversion and improve the beam quality. Though the thermal lensing is weak in the Nd:YLF crystal, it is still necessary to design a broad stable resonator. By using the ABCD matrix and mode self-consistency condition, \([21,22]\) the beam size distribution in the cavity can be simulated. Fig. 4 shows the beam mode sizes at the crystal under different thermal focal lengths. It can be seen that the resonator is designed with a stable cavity under broad thermal focal length range. Besides, the beam mode size maintains nearly a constant throughout a wide range of thermal focal length, indicating a good beam mode matching throughout the whole pump power range.

3. Results and discussion

Both cw and pulse output performances are studied in this work. Fig. 5 shows the cw output power as a function of incident 808 nm power.
pump power. The threshold occurs at \(\sim 2 \) W pump power. At maximum pump power of 30 W, the 1053 nm laser output power is 13.5 W, corresponding to an optical-to-optical efficiency of 45%. The average slope efficiency is 51% with respect to the incident pump power. The Nd:YLF crystal offers an absorption efficiency of 90% of 808 nm power, implying that the conversion efficiencies should be 10% higher with respect to the absorbed power. Besides, the output power linearly increases with pump power. Higher output power is expected when using larger power 808 nm diode.

The output beam is relatively elliptical at the maximum output. A cylindrical lens is inserted in front of the crystal to correct the beam profile. Finally, a roundness of 99% beam profile is obtained. The beam quality factor \(M^2 \) is also measured with the aid of CCD, as is shown in Fig. 6. The \(M^2 \) is measured to be \(\sim 1.02 \) implying a near diffraction limited beam is obtained.

Nd:YLF is much attractive in high energy pulse lasers at low repetition rates. In this work, the Q-switched laser performance at 1 kHz repetition rate is studied. Fig. 7 shows the pulse energy as a function of incident pump power. A 5 mJ pulse energy is obtained at maximum pump power with a pulse duration of 40 ns, as is shown in Fig. 8. The corresponding peak power is 125 kW.

4. Conclusions

In summary, for end-pump configuration the pump position is also important in addition to the mode matching. We have developed a
model to calculate the optimal pump position so as to achieve best laser performance. Strategies to reduce the stress fracture of Nd:YLF is also considered in the laser design. Eventually, we have demonstrated a high energy high efficiency Nd:YLF laser operating at 1053 nm wavelength. For cw operation a 13.5 W output power is obtained with a slop efficiency of 51% and the beam quality is near diffraction limited with $M^2 \sim 1.02$. Under 1 kHz Q-switch operation, a high pulse energy of 5 mJ is obtained with a peak power of 125 kW. The attractive properties of Nd:YLF provide the considerable scope in high energy high beam quality lasers.

Acknowledgments

This worked is supported by Advanced Optowave Corporation. Thanks to the laser scientists in the R&D department for valuable discussion.

References