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1. INTRODUCTION 

Optical parametric oscillators are a convenient method to create a widely 
tunable source of laser radiation. An optical parametric oscillator begins with a 
pump laser. In many cases the pump laser is a well-behaved solid-state laser 
such as a Nd:YAG laser or a frequency-doubled Nd:YAG laser. To complete the 
system, a nonlinear crystal between a set of mirrors is required. As such, the 
optical parametric oscillator by itself is an extremely simple device. Using an 
optical parametric oscillator, any wavelength longer than the pump wavelength 
and nominally within the transparency region of the nonlinear crystal can be cre- 
ated. However, practical problems limit the range of generated wavelengths to 
those that are somewhat longer than the pump wavelength, nominally a factor of 
1.2 or so. 

Optical parametric oscillators may be regarded as photon splitters. That is, a 
pump photon is split into two photons or one photon divides itself to create two 
photons. To satisfy conservation of energy, the sum of the energy of the two cre- 
ated photons must equal the energy of the pump photon. With the energy of a 
photon given by hv where h is Planck's constant and v is the frequency of the 
photon, the conservation of energy can be written as 
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V1 ~-~ V2 --f- V 3 . (1) 

In this expression, the subscript 1 denotes the pump, 2 denotes the signal, and 3 
denotes the idler. By convention, the signal is the higher of the two generated 
frequencies. Any pair of frequencies can be generated, but only frequencies that 
satisfy the conservation of momentum will be generated efficiently. Conserva- 
tion of momentum can be expressed as 

kl = k2 + k3  • (2) 

In this expression, k i is the wave vector at frequency V i. For the most common 
situation where the interacting beams are collinear, the vector relation simplifies 
to an algebraic relation. Substituting 2rtnihv i for the wave vector, the relation 
becomes 

n 1 V 1 = ~ V 2 + n 3 V 3 , (3) 

where n i is the refractive index at the i'th frequency. In practice, the conservation 
of momentum will limit the generated wavelengths to a relatively narrow spec- 
tral bandwidth. 

Optical parametric oscillators have several desirable features including a 
wide range of tunability. In practice, the ultimate tuning range of the optical para- 
metric oscillator is limited only by the conservation of momentum or the range of 
transparency of the nonlinear material. Consequently, the practical range of tun- 
ing is usually very wide and is set by the available transmission properties of the 
ancillary optics. Not only is the tuning range wide, the gain is relatively flat. To 
first-order approximation, the gain of the optical parametric device is maximized 
at the degenerate wavelength, which is where the signal and idler are equal. Away 
from the degenerate wavelength, gain decreases relatively slowly as the wave- 
length of the device is tuned to other wavelengths. Another advantage of this 
device is the inherent wavelength selectivity of the device. Although lasers with 
wide spectral bandwidths are available, several wavelength control devices are 
often used to effect the tuning. Optical parametric oscillators, on the other hand, 
have a built-in wavelength control mechanism, namely, the requirement to satisfy 
the conservation of momentum. Conservation of momentum does not provide 
fine wavelength control, but it does provide broad wavelength control. 

Optical parametric oscillators have several other desirable features includ- 
ing a compact size, good beam quality, and the potential of high-gain ampli- 
fiers. A simple optical parametric oscillator consists of a nonlinear crystal in a 
resonator. As such, these devices can easily be hand-held items. In principle, 
the mirrors could be coated on the nonlinear crystal if a more compact device is 
required, however, this would limit the flexibility of the system. The beam qual- 
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ity of the device is usually good although it does depend on the beam quality of 
the pump laser. Heat loads on the optical parametric oscillator are usually quite 
small, thus minimizing the effects of thermally induced distortions on the beam 
quality. In addition, optical parametric amplifiers are available by simply delet- 
ing the mirrors forming the resonator. By utilizing optical parametric ampli- 
fiers, the output of an optical parametric oscillator can be amplified to the 
desired level. Optical parametric amplifiers are especially attractive because 
they are usually high-gain devices. 

Optical parametric oscillators do require a pump laser, often with good beam 
quality. Although optical parametric devices are usually compact, the size of the 
system does depend on the size of the pump laser. Because optical parametric 
oscillators are so small, the size of the system is essentially the size of the ancil- 
lary pump laser. With the maturation of diode-pumped solid-state lasers, the size 
of the pump laser should decrease considerably. As optical parametric oscillators 
convert pump photons, the system efficiency is limited by the efficiency of the 
pump laser. In general, the evolution of diode-pumped solid-state lasers will also 
make a significant increase in the system efficiency. In addition to the limitation 
of the efficiency set by the efficiency of the pump laser, the optical parametric 
oscillator is limited by the ratio of the photon energy of the generated wavelength 
to the photon energy of the pump wavelength. For efficient systems, thus, the 
generated wavelength should be relatively close to the pump wavelength. 

Although optical parametric oscillators have many desirable features, they 
have been limited in application to date primarily by the limited nonlinear crys- 
tal selection and the availability of damage-resistant optics. Even though non- 
linear crystals have been investigated nearly as long as lasers themselves, the 
crystal selection was limited. However, a recent interest in these devices has 
been spurred by the introduction of several new nonlinear crystals, which have 
improved the performance of optical parametric oscillators. The efficiency of 
these devices is dependent on the power density incident on the nonlinear crys- 
tal. A high power density is required for efficient operation. Usually, the power 
density is limited by laser induced damage considerations. Initially, the laser 
induced damage threshold limited the performance of existing nonlinear crys- 
tals. However, some of the newer nonlinear crystals have demonstrated higher 
laser induced damage thresholds. In addition, advances in optical fabrication and 
coating technology should further improve the laser induced damage threshold. 
With these advances, optical parametric devices should become more efficient. 

Optical parametric oscillators were demonstrated only a few years after the 
first demonstration of the laser itself [1]. For this demonstration, a Q-switched 
and frequency-doubled Nd:CaWO 4 laser served as a pump for a LiNbO 3 optical 
parametric oscillator. Tuning was accomplished by varying the temperature of the 
device, and the device was tuned between about 0.96 to 1.16 ~tm. However, the 
output power was low, about 15 W of peak power. From this initial demonstra- 
tion, the state of the art has improved to where peak powers well above 1.0 MW 
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are available and the tuning is limited essentially by the range of transparency of 
the nonlinear crystal. 

Nonlinear optics devices in general and optical parametric oscillators in par- 
ticular have received a significant amount of theoretical attention. Nonlinear 
interactions between three waves have been investigated by several authors [2,3]. 
In the first, the interaction between planes waves was considered. A treatment that 
allowed a variable phase between the interacting plane waves and also a depletion 
of the various waves provided a description where complete conversion could be 
achieved under ideal conditions. However, in reality, a plane wave is a mathemat- 
ical fiction. Consequently, in the second of these treatments, the effects of a finite 
beam size were considered under the approximation of negligible depletion of the 
pump wave. In actual situations, the effects of both finite beam size and pump 
depletion should be taken into account. 

A comprehensive review of the progress to date on optical parametric oscil- 
lators was given several years after the first introduction of the optical parametric 
oscillator [4]. In this review, the effects of Gaussian beam radii on the interaction 
were considered as well as the effects of singly resonant and doubly resonant 
optical parametric oscillator resonators. In addition, a calculation of the thresh- 
old pumping power was included and an estimate of the saturation and power 
output was given, A figure of merit to characterize the utility of nonlinear crys- 
tals was also introduced. 

A later investigation of optical parametric oscillators focused on both the 
threshold and the linewidth of the device. Dependence of the threshold on the res- 
onator length, the nonlinear crystal length, and the pump beam radius was mea- 
sured and compared with the model developed to describe the operation of the 
device [5,6]. Linewidth was controlled by means of gratings, etalons, and the nat- 
ural frequency-selective properties of the optical parametric interaction, including 
the aperture effect imposed by the finite pump beam radius. Combining these 
effects by using a square root of the sum of the squares technique, good agreement 
was obtained between the measured linewidth and the combination of the calcu- 
lated linewidths. It has also been shown that calculations of the linewidths require 
an expansion of the phase mismatch retaining terms through second order [7]. 

Another treatment investigated the average power limit imposed on the opti- 
cal parametric oscillator imposed by crystal heating that was caused by absorp- 
tion of the interacting waves. Because absorption occurs throughout the volume 
of the nonlinear crystal while cooling occurs at the surface, thermal gradients 
within the nonlinear crystal are established. Because the refractive index 
depends on the temperature, phase matching cannot be maintained over the 
entire interaction volume. As the average power increases, the thermal gradients 
also increase, thereby limiting the volume over which the nonlinear interaction is 
effective. As the volume of the interaction decreases, the efficiency of the inter- 
action also decreases. Average power limits have been estimated for the optical 
parametric interaction for both Gaussian and circular beam profiles [8]. 
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2. PARAMETRIC INTERACTIONS 

Optical parametric oscillators and amplifiers can be created by using the fre- 
quency mixing properties in nonlinear crystals. Nonlinearity in crystals can be 
characterized through a set of nonlinear coefficients. In general, the polarization 
of a crystal can be expanded in a power series of the applied electric field. For 
most materials, the components of polarization vector P i are linearly related to 
the components of the applied electric field vector E r Subscripts refer to the vec- 
tor components of the polarization and the electric field and are usually 
expressed in Cartesian coordinates. Nonlinear crystals have a significant non- 
linear response to the electric field which can be described by 

P, NL= EO ~_~dij(EE)j , (4) 
J 

where e 0 is the permittivity of free space, dij are components of a 3 x 6 tensor, 
and (EE)j is the product of the applied electric fields creating the nonlinear 
polarization. Because the polarization depends on the product of the applied 
electric fields, frequency mixing can occur. That is, the product of the two elec- 
tric fields will contain terms at both sum and difference frequencies. Sum and 
difference frequencies are obtained by expanding the product of two sine waves 
using trigonometric identities. Optical parametric oscillators use this effect to 
generate new frequencies or wavelengths from the pump. 

Components of the nonlinear tensor depend on the symmetry of the nonlin- 
ear crystal. For a nonlinear crystal with very low symmetry, all 18 components 
of the nonlinear tensor may exist. However, in general, crystal symmetry mini- 
mizes the number of independent components. Depending on the symmetry, 
some of the components are zero while other components may be simply related 
to each other. For example, some components may be equal to a given compo- 
nent or equal to the negative of a given component. Which components exist 
depends on the point group of the nonlinear crystal. Given the point group, the 
nonzero components and the relations between them can be determined by refer- 
ring to tables [9]. 

To satisfy conservation of momentum, the nonlinear interaction usually 
occurs in a birefringent crystal. Over the range of transparency, the refractive 
index of a crystal is usually a monotonically decreasing function of wavelength. 
If this is the case, the crystal is said to have normal dispersion. Thus, in 
isotropic materials where there is only one refractive index, conservation of 
momentum cannot be satisfied. To satisfy conservation of momentum, a bire- 
fringent nonlinear crystal is utilized since, in these crystals, two indices of 
refraction are available. 

In birefringent crystals the refractive index depends on the polarization as 
well as the direction of propagation. In uniaxial birefringent crystals, at a given 
wavelength, the two refractive indices are given by [10] 
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n = no , (5) 

H = 

sin2 (0) [ -1/2 c°s2 (0------~) + (6) 
n~o ~e ~ ' 

In this expression, n o is the ordinary refractive index, n e is the extraordinary 
refractive index, and 0 is the direction of propagation with respect to the optic 
axis. For propagation normal to the optic axis, the extraordinary refractive index 
becomes n e. Thus, the extraordinary refractive index varies from n o to n e as the 
direction of propagation varies from 0 ° to 90 °. If there is a large enough differ- 
ence in the ordinary and extraordinary refractive indices, the dispersion can be 
overcome and the conservation of momentum can be satisfied. A similar, but 
somewhat more complicated, situation exists in biaxial birefringent crystals. 

Given the point group of the nonlinear crystal, an effective nonlinear coeffi- 
cient can be defined. To calculate the effective nonlinear coefficient, the polar- 
ization and the direction of propagation of each of the interacting waves must be 
determined. Components of the interacting electric fields can then be determined 
by using trigonometric relations. If the signal and idler have the same polariza- 
tion, the interaction is referred to as a Type I interaction. If, on the other hand, 
the signal and idler have different polarizations, the interaction is referred to as a 
Type II interaction. By resolving the interacting fields into their respective com- 
ponents, the nonlinear polarization can be computed. With the nonlinear polar- 
ization computed, the projection of the nonlinear polarization on the generated 
field can be computed, again using trigonometric relations. These trigonometric 
factors can be combined with the components of the nonlinear tensor to define 
an effective nonlinear coefficient. With a knowledge of the point group and the 
polarization of the interacting fields, the effective nonlinear coefficient can be 
found in several references [11]. Tables 7.2 and 7.3 tabulate the effective non- 
linear coefficient for several point groups. 

Given an effective nonlinear coefficient, the gain at the generated wave- 
lengths can be computed. To do this, the parametric approximation is usually uti- 
lized. In the parametric approximation, the amplitudes of the interacting electric 
fields are assumed to vary slowly compared with the spatial variation associated 
with the traveling waves. At optical wavelengths, this is an excellent approxima- 
tion. If, in addition, the amplitude of the pump is nearly constant, the equation 
describing the growth of the signal and the idler assumes a particularly simple 
form [12-14]: 

~)z = - 2xjq2 v2 deE 1 & *  exp (-  j A k z )  , (7) 
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3E~ 
= - 2rtjrI3 v 3 d e E  1 E 2 exp (-  j A k z )  . (8) 

3z 

In these expressions E i is the electric field, ]]i is the impedence, V i is the fre- 
quency, d e is the effective nonlinear coefficient, Ak is the phase mismatch, and j 
is the square root o f -1 .  Subscripts 1, 2, and 3 refer to the pump, the signal, and 
the idler, respectively. Phase mismatch is the deviation from ideal conservation 
of momentum, or 

nl l/2 n3) (9) 
Ak = 2re ;L~ ~2 ~3 " 

When the idler is initially zero but the signal is not, the coupled equations can be 
solved exactly to yield 

= q- 2__ 2 / (FI12 (10) 

In this expression, S 2 is the intensity of the signal, $20 is the initial intensity of 
the signal, I is the length of the nonlinear crystal, and 

4~2de21 E, [ 2 
F = . (11) 

n2 n~ ~ , ~  

Although this expression describes the growth of plane waves well, in reality the 
interacting beams are not plane waves but are more likely to be Gaussian beams. 
When the interacting beams are Gaussian, the gain must be averaged over the 
spatial profile of the laser beam. 

Two common approximations are available for this expression that demon- 
strate the limiting performance of parametric amplification. If the mismatch is 
small compared with the gain, that is, if Ak is much smaller than F, this term can 
be neglected. In this case 

$2 - $2 cosh 2 IF/l • (12) 

Thus, the signal will enjoy exponential gain as long as the pump is not depleted. 
On the other hand if the gain is small compared with the mismatch, that is, if F 
is much smaller than Ak, this term can be neglected. In this case, 
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$2=$2 l +(Fl)2sin2 ( A k l / 2 ) / ( A k l / 2 )  2 • (13) 

In this case, energy can be transferred between the pump and the signal and idler 
beams and back again. 

When a Gaussian beam enjoys a gain profile created by a Gaussian pump 
beam, an average-gain concept can accurately describe the situation. An average 
gain can be computed by integrating the product of the initial signal and the gain 
created by a Gaussian pump beam. With a Gaussian pump beam, the square of 
the electric field can be expressed as 

IE2 [2= 2 2P~ ( -2[:)2 ) 
ce0 nl gw~ exp w2 , (14) 

where c is the speed of light, P1 is the power of the pump beam, w 1 is the beam 
radius, and p is the radial coordinate. When the electric field of the pump varies 
with radial position, the gain also varies radially since F depends on the electric 
field of the pump. An average gain G a can be defined as [ 15] 

Ga = rt2----~ exp - 2p2 cosh 2 (F/)2~pdp 
2 

W 2 
(15) 

Although this expression cannot be integrated in closed form, it is readily 
amenable to integration using numerical techniques. Note that this expression 
represents a power gain. Energy gain can then be readily computed by integrat- 
ing this expression over time. 

Gain in parametric amplifiers has been characterized experimentally and 
found to agree with the predictions of the model. For these experiments, a contin- 
uous wave (cw) HeNe laser operating at 3.39 ktm was used as the signal, and a 
pulsed Er:YLF laser, operating at 1.73 ktm, was used as the pump. Both the 
energy and the pulse length of the pump laser were measured to determine the 
power of the laser. Beam radii of both the pump and the signal beam were mea- 
sured using a translating knife-edge technique. Pump energies ranged up to 15 mJ, 
and the pulse lengths, represented by z 1, were typically around 180 ns. Even with 
this relatively low power, single-pass gains in excess of 13 were observed. In Fig. 
1, the experimental gain of the signal versus (E1/'I;1)~ is plotted along with the 
average gain computed from Eq. (15). To within experimental error, the agree- 
ment between the experiment and the prediction of the average gain is found to be 
reasonable. High single-pass gains available with optical parametric amplifiers 
make their use attractive in high-energy-per-pulse situations. 

While high-gain optical parametric amplifiers are possible, amplified sponta- 
neous emission (ASE) does not affect these devices like it affects laser amplifiers. 
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Average gain of 3.39%tm HeNe laser as a function of pump power. 

In a laser amplifier, energy is stored in the laser material for long time intervals, 
on the order of 100 Its. During this time interval, spontaneous emission can 
deplete the stored energy, thus reducing the gain. In an optical parametric ampli- 
fier, energy is not stored in the nonlinear material. In addition, gain is only pre- 
sent while the pump pulse traverses the nonlinear crystal, a time interval on the 
order of 10 ns or less. As such, ASE does not detract from the gain significantly. 

3. PARAMETRIC OSCILLATION 

Whereas parametric amplification occurs at any pump level, parametric 
oscillation exhibits a threshold effect. The threshold of a parametric oscillator 
can be determined for either pulsed or cw operation of the device. In a cw para- 
metric oscillator, threshold will occur when gain exceeds losses in the resonator 
even though the time interval required to achieve steady state may be relatively 
long. In a pulsed parametric oscillator, on the other hand, gain may exceed the 
losses with no measurable output. In these cases, the pump pulse may become 
powerful enough to produce a net positive gain. However, before the generated 
signal reaches a measurable level, the pump power falls below the level at which 
positive gain is achieved. Consequently, to describe this situation both an instan- 
taneous threshold and an observable threshold are defined. Pulsed gain is shown 
in Fig. 2 with a threshold set by the losses in the parametric oscillator resonator. 
Although an observable threshold depends on the detection system, it remains a 
useful concept. As the signal grows below observable threshold, it will enjoy 
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exponential gain. Because of this large gain, the difference between an observ- 
able threshold that produces 1.0 or 10.0 ~tJ is relatively small. 

In the cw parametric oscillator, a mode gain can be determined under 
threshold conditions. Because the pump beam will not be significantly depleted 
at threshold, the longitudinal variation of the pump beam may be neglected. 
Because the product of two Gaussian beams is another Gaussian beam, interact- 
ing beams will generate a nonlinear polarization, which is also a Gaussian. If the 
electric fields at wavelengths ~i and Xj interact, they will generate a nonlinear 
polarization at wavelength Xk, which will have a spatial variation characterized 
by a beam radius given by 

l_L = 1__!_ + 1 (16) 
w kg 

Note that the generated nonlinear polarization does not necessarily have the 
same spatial variation as the incident field at ~k" Because of the potential mis- 
match between the incident electric field and the generated electric field, the gain 
coefficient will have an additional term to account for this effect [6]. Including 
this term in the gain expression yields 

(rl) ~ 8n:d~el:P, 8( WIW2W3 )2 
- - . ( 1 7 )  

M 1 n2 ~ 3 ~ 3 3 c E 0  ~ w ~ w  2 + w 1 w 3 q- w 2 w  3 
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Considerable simplification can result in this expression depending on whether 
the optical parametric oscillator is singly or doubly resonant. 

In singly resonant oscillators, only one of the generated waves is resonant. 
Either the signal or the idler could be the resonant wave. In general, singly reso- 
nant oscillators are preferred for pulsed applications where the gain is high. In 
doubly resonant oscillators, both the signal and the idler are resonant. Doubly 
resonant oscillators are often used for cw applications because of the lower 
threshold. Doubly resonant oscillators are often more challenging to control 
spectrally because generated wavelengths must satisfy conservation of energy, 
conservation of momentum, and the resonant condition. If the parametric oscil- 
lator is a singly resonant device, only one of the generated waves has a beam 
radius determined by the configuration of the resonator. If, for example, the sig- 
nal is resonant, the idler beam radius will be given by 

1_!__ = 1_1__ + 1 ( 1 8 )  
2 2 " 

W 3 W~ W 2 

In this situation, the gain coefficient simplifies to 

irish_ 8j~2d212p1 2 (19) ( 2) 2 +  W n l  1/2 1 / 3 ~ 2 ~ 3 c E  0 ~ w 1 

A similar expression can be obtained if the idler is resonant by interchanging the 
subscripts. To maximize the gain, the pump beam radius and the resonant beam 
radius can be minimized. However, eventually laser induced damage or birefrin- 
gence effects will limit the minimum practical size for the beam radii. 

If the parametric oscillator is a doubly resonant device, both of the gener- 
ated waves have a beam radius determined by the configuration of the resonator. 
To maximize the gain for a doubly resonant device, the beam radius of the pump 
can be optimized. Performing the optimization yields a beam radius for the 
pump, which is given by 

1__1_ = I_L_ + 1 (20) 
2 2 " 

W~ W 2 W 3 

Utilizing the optimum pump beam radius yields a gain coefficient given by 

2 2 2 8~ del P 2 ( r t )  2 = 
n ,  1/2 1 /3~2~3C E 0 g ( w 2 + w 2 )  " 

(2~) 

As in the case of the singly resonant oscillator, gain can be increased by decreas- 
ing the beam radii of the resonant beams. However, also as in the singly resonant 
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device, laser induced damage and birefringence will limit the minimum size of 
the resonant beam radii. 

Given the expressions for the gain, threshold can be defined by equating the 
gain and the losses. For cw operation, threshold will occur when [4] 

( ) O~ 20~ 3 (22) 
cosh Fl = 1 + 2 -o~ 2 - - 0 ~  3 ' 

where ct 2 is the round trip field loss at the signal wavelength and (X 3 is the round 
trip field loss at the idler wavelength. In the singly resonant case and under small 
gain, o~ 2 is near unity and (X 3 is near zero. Under these circumstances, the thresh- 
old for the singly resonant signal becomes approximately 

(El) 2= 2t~ 3 . (23) 

A similar expression exists for the situation where the signal is resonant. Again 
under the small-gain approximation but in the doubly resonant situation where 
both effective reflectivities are close to unity, the approximate expression for 
threshold becomes 

(F/)2 = (~20~ 3 . (24) 

By employing a doubly resonant parametric oscillator, the threshold can be 
reduced substantially since tx 2 can be an order of magnitude smaller than 2.0. 

An observable threshold can be defined for pulsed parametric oscillators. 
An instantaneous threshold for a pulsed parametric oscillator is similar to the 
threshold for the cw case just defined. To define the observable threshold, Fig. 
2 can be utilized. At time t 1, a net positive gain exists. At this time, the signal 
and the idler begin to evolve from the zero point energy. At time t 2 the pump 
power decreases to a point where the net gain is no longer positive. In the 
interim, as the signal and idler evolve, they are initially too small to be 
observed. For an observable threshold to be achieved, the power level in the 
resonator must increase essentially from a single circulating photon to a level 
that is amenable to measurement. To accomplish this, the gain must be on the 
order of exp(33). 

Observable threshold depends on the time interval over which a net positive 
gain exists as well as how much the pump power exceeds the pump power 
required for threshold. For a circular pump beam, the observable threshold can 
be approximated by a closed-form expression [8]. In this approximation, a gain 
coefficient can be defined as 
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2 2 2 1//2 t,_, l~2 = 8rt del 2E1 2 
nl n2 n3 L2 L3 Ceo rtw~r 1 rt • (25) 

Using the gain defined in Eq. (25), the number of times over threshold, N, can be 
defined by using 

1 --In(emTc) 
- -  = ( 2 6 )  
N 2Fol ' 

where R m is the mean reflectivity of the mirrors at the resonant wavelength and 
T is the transmission of the nonlinear crystal. With these definitions, an observ- 
able threshold will be achieved at an approximate time when 

3 3  = ~  
cFo l'c , _,2) 

1 - exp ( -~2  2t 2 (27) 

In this expression, the pump pulse length 7:1 is related to the full width at half- 
maximum (FWHM) pulse length 7:pl through the relation 

I:pl = 0.827:1 . (28) 

If time t is less than the time at which the gain falls below the positive value, that 
is, t 2, an observable threshold will be achieved. 

A slope efficiency can also be estimated for an optical parametric oscillator. 
Eventually, the slope efficiency will be limited by the ratio of the photon ener- 
gies. At best, each pump photon will produce a single photon at both the signal 
and idler wavelengths. Thus, the energy conversion efficiency will be limited by 
the ratio of the photon energy at the output wavelength to the photon energy at 
the pump wavelength; that is, the slope efficiency will be limited to ~1/~2 when 
the output is at the signal. In a singly resonant oscillator, in essence, all of the 
generated signal photons will be available for the output. However, for a doubly 
resonant oscillator, some of the generated photons will be dissipated by losses 
within the resonator. Consequently, for a double resonant oscillator, the ultimate 
slope efficiency will be limited by the ratio of the fractional output to the total 
losses in the resonator. If R2m represents the output mirror reflectivity wave- 
length and R2t represents the other losses at the signal wavelength, the ultimate 
slope efficiency will be further limited by the ratio of the output to the total 
losses, that is In(R2m)/ln(R2mR2t). In many instances the losses in the parametric 
oscillator resonator can be kept small so that this ratio can be relatively high. 

Experiments have demonstrated the validity of the basic approach [ 16,17]. For 
one set of experiments, an Er:YLF pump laser was used with a singly resonant 
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FIGURE 3 An AgGaSe 2 optical parametric oscillator experimental arrangement utilizing an 
Er:YLF pump laser. 

AgGaSe 2 optical parametric oscillator. For these experiments, the signal was 
resonant rather than the idler, as shown in Fig. 3. The idler wavelength was 
3.82 lam. A pump beam was introduced through a folding mirror within the opti- 
cal parametric oscillator resonator. Output energy of the optical parametric oscil- 
lator was measured as a function of the pump energy for various lengths of the 
resonator. A typical plot of the results appears in Fig. 4. Data were extrapolated 
to define a threshold, and a slope efficiency was determined at an input energy 
1.5 times the threshold. 

Because the threshold depends on the number of passes the evolving signal 
can make through the gain medium, it can be reduced by decreasing the length 
of the parametric oscillator resonator. A shorter resonator length also improves 
the slope efficiency. By providing a shorter pulse evolution time interval, more 
of the pump pulse is available to be converted to useful output. Thus, both the 
threshold and the slope efficiency will benefit from a shorter resonator. 

Benefits of a shorter resonator are displayed in Fig. 5. Data in this figure are 
presented for the same experimental configuration described previously. Thresh- 
old decreases, perhaps linearly, as the resonator length is decreased. For the 
shortest resonator length, the slope efficiency reaches 0.31. It may be noted that 
the ratio of the photon energies for this situation is 0.45. Thus, the observed 
slope efficiency is about V~ of the maximum slope efficiency. 

4. SPECTRAL BANDWIDTH AND ACCEPTANCE ANGLES 

Spectral bandwidth, acceptance angles, and allowable temperature varia- 
tions are determined from the conservation of momentum or phase-matching 
condition. To satisfy the conservation of energy and momentum simultaneously 
requires a precise relation among the refractive indices at the various wave- 
lengths. Referring to the previous section on parametric amplification, it can be 
shown that the efficiency of a low-gain and low-conversion nonlinear interaction 
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FIGURE 4 
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decreases according to a sin2(x)]x 2 relation. An allowable mismatch can be 
defined as 

A kl/2 = ~/2 . (29) 

At this point, a nonlinear interaction decreases to about (4//1; 2) the efficiency of 
the ideally phase-matched interaction. For nonlinear interactions in the optical 
region of the spectrum, the ratio of the length of the nonlinear crystal to the 
wavelength is a large number. Thus to make the phase mismatch small, the rela- 
tion among the three refractive indices becomes relatively strict. Because the 
refractive indices depend on the direction of propagation and temperature as 
well as the wavelengths, rather small variances are set for these parameters in 
order to satisfy the phase-matching condition. 

Allowable variances for these parameters can be calculated by expanding 
the phase-matching condition in a Taylor series about the phase-matching condi- 
tion. In general, if x is the parameter of interest, the mismatch can be expanded 
as follows [7] 

~_~k ½ O2Ak Z~(2 
A k = A k0 + ~ Ax + Ox 2 (30) 
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FIGURE 5 
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By evaluating the expression at the phase-matching condition, the zeroth-order 
term vanishes. In most cases, the first term then dominates. When this is the 
case, the allowable variance of the parameter of interest is simply 

rt/l 
A x = i )Ak / i )x  " (31) 

However, in many cases, the first-order term vanishes or is comparable to the 
second-order term. For example, the first-order derivative with respect to angle 
vanishes for noncritical phase matching. First-order derivatives with respect to 
wavelength can also vanish, often when the generated wavelengths are in the 
mid-infrared region [7]. In these cases, both the first- and second-order terms 
must be evaluated and the resulting quadratic equation must be solved to deter- 
mine the allowable variance. 

Acceptance angles should be calculated for orthogonal input angles. Con- 
sider the case where the ideally phase-matched condition defines a direction of 
propagation. For now, consideration will be restricted to uniaxial crystals. For 
the situation shown in Fig. 6 the ideally phase-matched direction and the optic 
axis of the crystal will define a plane referred to as the optic  p lane .  For an arbi- 
trary direction of propagation, two angles can be defined, one in the optic plane 
and the other orthogonal to the optic plane. In an uniaxial crystal, the refractive 
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FIGURE 6 
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index varies as the angle in the optic plane varies but is independent, to first 
order, of a variation of the angle orthogonal to the optic plane. In the optic plane, 
the derivative of the refractive index with angle is 

2 
~17 _-- n3(n2-ne)2 2 s i n ( 0 )  c o s ( 0 )  . (32) O0 n o n e 

Having evaluated the derivative of the refractive index with angle, the variation 
of the wave vector for extraordinary waves is 

~)k _ 2rt On /)---~- --~/)--~. (33) 

For ordinary waves, this derivative is, of course, zero. In most cases, the first- 
order derivative will dominate. As such, the acceptance angle will be determined 
using the first-order approximation. However, orthogonal to the optic plane, the 
first-order term vanishes. Here, the acceptance angle is determined by the second- 
order term. Usually, the first-order term will restrict the acceptance angle an order 
of magnitude more than the second-order term. First-order acceptance angles are 
often on the order of a few milliradians, comparable to the beam divergence of 
the laser in many cases. Because the second-order term is so much less restric- 
tive, the acceptance angle orthogonal to the optic plane is often ignored. In biax- 
ial crystals, the acceptance angles in orthogonal directions assume much more 
importance. In these crystals, the refractive index will, in general, depend criti- 
cally on variations in the direction of propagation in both directions. 

Measured acceptance angles agree well with the acceptance angles pre- 
dicted using the preceding analysis. Although many examples are available, only 
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one will be presented [15]. Measurement of the acceptance angle can be per- 
formed using parametric amplifier experiments. Amplifier experiments can be 
used directly since the interacting wavelengths are fixed in these experiments. In 
parametric oscillator experiments, changing the angle at which the nonlinear 
crystal is oriented will tend to change the wavelength. As such, a measurement 
of the parametric oscillator output as a function of the orientation of the nonlin- 
ear crystal is likely to produce a tuning curve rather than a measurement of the 
acceptance angle. Data on the parametric amplifier presented here are for an 
AgGaSe 2 parametric amplifier pumped by a Ho:YAG laser. In this case, the 
AgGaSe 2 is --20 mm in length and oriented at =48 ° to the direction of propaga- 
tion. A 3.39-~m HeNe laser is being amplified. Measured amplification as a 
function of the angular orientation of the crystal is shown in Fig. 7. Also shown 
is the predicted relative amplification as a function of the orientation of the crys- 
tal. To obtain the predicted relative amplification versus angle a relation of the 
form sinhZ[(Fl)2- ( A k l / 2 ) z ] / [ ( F I ) 2  - ( A k l / 2 ) 2 ]  is used since the low-gain approxi- 
mation is not valid in this case. Results of this experiment, as well as many oth- 
ers cited in the literature, tend to confirm the validity of this analysis. 

The spectral bandwidth of the nonlinear interaction will be determined 
much like the acceptance angle in some respects. For optical parametric oscilla- 
tors, the pump wavelength is usually fixed. However, as the signal wavelength 
varies, the idler wavelength can vary in order to satisfy conservation of energy 
or vice versa. Thus, a variation in one of these wavelengths will produce a com- 
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pensating variation in the other wavelength. Keeping the pump wavelength fixed 
and taking the derivative of the mismatch with respect to the signal wavelength 
produces 

d A k  = ~Ak ~ ~Ak  (34) 
dL2 ~ 2  )~2 ~ 3  " 

When taking the derivatives of the phase mismatch with respect to the wave- 
length, the pump wavelength can be considered to be fixed. Evaluating the par- 
tial derivatives in Eq. (34) yields 

~Ak____L, = 2rt ~r/i r/i (35) 
~ i  ~'i 0~i  ~i " 

Derivatives of the refractive index with respect to wavelength can be determined 
using experimental refractive index data or curve fits to the experimental refrac- 
tive index data. If a standard two-pole Sellmeier expression is used, then 

bn )~ E 
~))~ n 

BC DE 4 (36) 

With these expressions, the single-pass spectral bandwidth of a difference fre- 
quency interaction can be calculated. 

To calculate the spectral bandwidth of an optical parametric oscillator, the 
number of passes of the signal through the nonlinear crystal must be taken into 
account. Calculated using equations 31 and 34 is the spectral bandwidth for a 
single pass. However, during the pulse evolution, the signal makes repeated 
passes through the nonlinear crystal. Subsequent passes through the nonlinear 
crystal will continue to narrow the spectral bandwidth of the parametric oscilla- 
tor. It has been shown [ 17-19] that the spectral bandwidth depends on the num- 
ber of passes the radiation makes through the spectral narrowing device, in this 
case the nonlinear crystal. To take this effect into account, the calculated single- 
pass spectral bandwidth should be divided by the p~, where p is the number of 
passes that occur during the pulse evolution time interval. An estimate of the 
number of passes the signal makes through the nonlinear crystal can be obtained 
from the pulse evolution time interval 1: e using the relation 

p = CZ e /2 / , ,  . (37) 

where c is the speed of light and I c is the length of the parametric oscillator 
resonator. 
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The spectral bandwidth of the parametric oscillator depends on the spectral 
bandwidth of the pump laser as well as the spectral bandwidth of the interaction. 
Consider the situation in a singly resonant oscillator where, in addition, only a 
single resonant wavelength exists. If the pump laser consists of several wave- 
lengths, each wavelength of the pump laser would mix with the single resonant 
wavelength of the parametric oscillator. As a result, each pump wavelength of 
the pump would produce a corresponding wavelength around the nonresonant 
wavelength. If A~, 1 is the spectral bandwidth of the pump, the corresponding 
spectral bandwidth of the nonresonant wavelength is given by 

A~L 2 = m~l ~2 2/;~7. (38) 

If the singly resonant oscillator does not restrict itself to a single wavelength but 
consists of a distribution of wavelengths with a spectral bandwidth of A~ 3, then 
each resonant wavelength would mix with each pump wavelength to produce a 
corresponding wavelength around the nonresonant wavelength. In this case, the 
spectral bandwidth of the nonresonant wavelength can be approximated as 

A~2 =K22 (A~(/K4 + AK 23/~ 3) 1/2 (39) 

For equal spectral bandwidths of the pump and the resonant wavelength, the 
spectral bandwidth of the pump is weighted more heavily since the pump wave- 
length is shorter. 

The spectral bandwidth of the parametric oscillator can also depend on the 
beam divergence of the pump. Heretofore, the phase mismatch has been 
expanded using a single variable. However, this parameter can be expanded as a 
function of two variables; for example, the wavelength and the propagation of 
direction. For each direction of propagation there is a combination of the signal 
and idler that minimizes the phase mismatch. Because a pump beam with finite 
divergence can be decomposed into a distribution of plane waves, each having a 
slightly different direction of propagation, a variety of wavelengths could result. 
To estimate this effect, the phase mismatch can be expanded in a Taylor series of 
two variables. Keeping terms only through first order and expanding around the 
ideal phase-matching direction yields 

ak  = -~---~. AK + -~--~k- A0 , (40) 

where 0 is an angle in the optic plane of an uniaxial crystal. For a beam with a 
divergence of AO, the corresponding spectral bandwidth becomes 

2A~ = 3Ak13~, (41) 
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For TEM00 mode pump beams, the divergence internal to the nonlinear crystal is 

A0 = ~.,/n,rtWl . (42) 

Using this for the beam divergence and evaluating the partial derivatives, the 
magnitude of this effect can be estimated. 

Experimental results appear in agreement with this analysis of the spectral 
bandwidth. The spectral bandwidths of parametric oscillators have been deter- 
mined experimentally for several situations [17,18]. In one instance, a Nd:YAG 
pump laser was utilized with a LiNbO 3 parametric oscillator. In this study, the 
wavelength control exerted by the nonlinear crystal was compared with wave- 
length control exerted by other wavelength control elements such as gratings and 
etalons. In the other instance, an Er:YLF laser was used to pump an AgGaSe 2 
optical parametric oscillator. In this study the effects of the pump divergence on 
the spectral bandwidth are compared with the effects of the pump spectral band- 
width and the spectral bandwidth of the nonlinear interaction. Results are shown 
in Fig. 8. It is of interest that in both cases the spectral bandwidth is significantly 
increased by the pump beam divergence. 

An allowable variation of the temperature can also be defined in a similar 
manner by expanding the phase-matching condition as a function of tempera- 
ture. Expanding the phase mismatch as a function of the temperature T yields 
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Ak = Ak0 + %-~ATk- AT . (43) 

Expansion is usually limited to first order because the variation of the refractive 
index with temperature is usually known only to first order. Expanding the first- 
order term yields 

[ 

3Ak =2rl:[ 1 3nl 1 3n2 1 3n____3~ 
3T I ~'1 3T ~2 3T X 3 3T ) " (44) 

For ordinary waves in uniaxial crystals, values for the variation of the refractive 
index with temperature can be used directly. For extraordinary waves, in general, 
the variation of the refractive index with temperature depends on the variation of 
the refractive index with temperature of both the ordinary and extraordinary 
waves. In uniaxial crystals this becomes 

~)n n3c°s2 (0) ~)n ° n3sin 2 (0) ~]'/e 
= -~ ( 4 5 )  3 3T 3 3T " 3T n o /v/e 

Substituting these expressions into the allowable phase mismatch yields the 
allowable temperature variation. Allowable temperature variation also enters into 
the calculation of the average power limit for a nonlinear interaction as well as 
the temperature tuning rate. 

5. BIREFRINGENCE EFFECTS 

Even though birefringence is necessary to produce an efficient interaction 
by compensating for dispersion, birefringence will eventually limit the efficiency 
of the interaction. Efficiency limitations can arise since the direction of energy 
propagation of ordinary beams and extraordinary beams is not, in general, 
collinear in a birefringent crystal. Even when both the ordinary and extraordi- 
nary beams are normally incident on the birefringent crystal, a difference in the 
direction of the energy propagation exists. The direction of energy propagation 
of a normally incident ordinary beam does not suffer any deviation when enter- 
ing the crystal. On the other hand, the direction of energy propagation of a nor- 
mally incident extraordinary beam occurs at an angle to the normal, denoted by 
9. For non-normal angles of incidence, both the ordinary and extraordinary 
beams are deviated by refraction, in accordance with Snell's law. However, in 
addition, the extraordinary beam still experiences the effects of the birefrin- 
gence, again characterized by the birefringence angle p. To satisfy the phase- 
matching condition, at least one of the interacting beams is an ordinary beam 
and at least one is an extraordinary beam. Thus, eventually the interacting beams 
separate, causing a decrease in the efficiency of the nonlinear interaction. 
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Birefringence angles can be calculated in uniaxial crystals given the ordi- 
nary and extraordinary indices of refraction, n o and n e, respectively [20]. In a 
given direction of propagation, there are two refractive indices for the two 
polarizations. Specifying a direction of propagation 0 and the two refractive 
indices, denoted by n o and n ,  a refractive index for the extraordinary polarized 
ray can be calculated, similar to the calculations used for phase matching. With 
these, the birefringence angle in an uniaxial crystal can be expressed as 

tan (9)=n2 ( n2 - no 2) sin (0)cos (0)/no 2 n~. (46) 

In an uniaxial crystal, the angle 9 is measured in the optic plane. In a biaxial 
crystal, a similar analysis can yield the birefringence angle. 

Birefringence eventually limits the region of overlap of interacting beams 
and therefore the efficiency of the nonlinear interaction. To obtain an estimate of 
the limitation, the region of the overlap can be calculated for the situation 
depicted in Fig. 9. Considering the overlap, an effective length 1 e can be calcu- 
lated by considering the following 

(~  f-~ Ji' E3 E1 E 2 dx dy dz 
le ~ "  

f~_. f_~EaEIE~,:Ix,:Iy o. (47) 

For extraordinary beams, the electric field can be represented as 

Ei= exp (48) 
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FIGURE 9 Birefringence effects. 
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where E i is the electric field of the interacting wave and W i is the beam radius. 
For ordinary waves, the expression for the electric field is similar but the bire- 
fringence angle is zero. 

In the case of a singly resonant oscillator, an effective length for the nonlin- 
ear crystal can be calculated using the preceding expressions. As an example, 
consider the case where the signal is resonant. In this case, the beam radius of 
the nonresonant idler w 3 is given by 

l__l_ = l_l_ + 1 (49) 2 2 " W 3 W~ W 2 

With this nonresonant beam radius, the integral can be evaluated to obtain an 
effective length I e for the nonlinear crystal: 

l e = l w e r f  (Tc ' /21 /  21w ) . (50) 

Here, eft(x) is the error function and l w is a parameter that depends on the beam 
radii of the pump beam and signal beam as well as birefringence. 

In general, the parameter 1 w is sensitive to which beams are ordinary and 
extraordinary as well as which waves are resonant and nonresonant. If the pump 
beam is an extraordinary beam and the signal and idler are both ordinary beams 
while the signal is resonant, 1 w can be expressed as [21] 

tw = iw? + /2 
(51) 

If the pump beam and the resonant wave are extraordinary waves, the expression 
for l w becomes [8] 

2w~ + w 2 w~ + w 

lw : 2 [W~ +W2(p~ - PlP2 "k" p2)"k- PlW22 4 + p2W4 

1/2 

(52) 

For other combinations of ordinary and extraordinary beams as well as resonant 
and nonresonant waves, the parameter 1 w can be calculated using the same 
approach. 

Because birefringence is needed to effect phase matching, but the birefrin- 
gence angle eventually limits the effective length of the nonlinear crystal, it is of 
interest to explore methods of achieving the former while minimizing the latter. 
One method of reaching this end is phase matching at 90 ° to the optic axis. If this 
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can be effected, it is often referred to as noncritical phase matching. If noncriti- 
cal phase matching is achieved, the birefringence angles become zero leading to 
an infinite effective length for the nonlinear crystal. In addition, the acceptance 
angle for the nonlinear interaction becomes much larger since the first-order term 
in the expansion of the phase mismatch vanishes. Since the ordinary and extraor- 
dinary indices of refraction have different dependencies on the temperature, non- 
critical phase matching may be possible by varying the temperature. However, if 
this is not possible, it is advantageous to select a nonlinear crystal that minimizes 
the deleterious effects of birefringence. Minimization can be accomplished by 
minimizing the difference in the ordinary and extraordinary index of refraction, 
that is, the birefringence, without compromising phase matching. Thus, it is of 
interest to determine how much birefringence is required. 

An estimate of the required birefringence is dependent on the dispersion of 
the nonlinear crystal. Dispersion of the nonlinear crystal is characterized by the 
first derivative of the index of refraction with respect to the wavelength----~n/~))~. 
If the interacting wavelengths are far from the absorption edges of the nonlinear 
crystal, the dispersion can be approximated as being nearly independent of wave- 
length. As a natural extension of this, birefringence also tends to be independent 
of wavelength. Within these constraints, the required birefringence An can be 
estimated for the various types of interactions. For Type I interactions, the 
required birefringence can be approximated as 

IAnl-lno-nel - , (53) 

For Type II interactions, a similar expression exists with the signal or idler wave- 
length replacing the pump wavelength, depending on which of these wave- 
lengths has a different polarization compared to the pump wavelength. B irefrin- 
gence in excess of this tends to limit the acceptance angle. In addition, more 
birefringence than required for phase matching exacerbates birefringence angle 
effects and thus the interaction length. 

6. AVERAGE POWER LIMITATIONS 

Thermally induced changes in the phase matching will limit the average 
power available from a nonlinear interaction. For all practical nonlinear crystals, 
significant absorption of the interacting wavelengths occurs even if the interact- 
ing waves are nominally in a transmitting region of the crystal. Absorption of the 
interacting wavelengths deposits heat throughout the volume of the nonlinear 
crystal. However, to dissipate the deposited heat, it must be conducted to the sur- 
face of the nonlinear crystal. Volumetric heating and surface cooling establish 
thermal gradients in the nonlinear crystal. Because the ordinary and extraordi- 
nary indices of refraction, in general, behave differently with temperature, the 
phase-matching condition cannot be maintained throughout the volume of the 
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nonlinear crystal. As the average power increases, the generated heat and the 
concomitant thermal gradients increase. Consequently, the effective volume of 
the nonlinear crystal decreases, which, in turn, eventually limits the average 
power that can be produced. 

Average power limitations will depend on the geometry of the nonlinear 
crystal and the interacting beams. When considering the geometry of the nonlin- 
ear crystal, actual cooling conditions in many instances can be approximated by 
two limiting situations. In most common situations, the lateral surfaces of the 
nonlinear crystal are in thermal contact with a heat sink while the entrance and 
exit surfaces are essentially insulated. In this case, the thermal gradients can be 
approximated as being radial. However, it is also feasible to insulate the lateral 
surface on the nonlinear crystal and extract the heat through the entrance and 
exit surfaces. Heat extraction could be accomplished by flowing a transparent 
fluid with high heat capacity over these surfaces. Gaseous He is an attractive 
candidate for such a fluid. In this case, the thermal gradients would be approxi- 
mately along the direction of propagation of the beams or longitudinal. Both 
cases are depicted in Fig. 10. 

Thermal gradients in the nonlinear crystal also depend on the beam profiles 
of the interacting beams. Again two approximations are commonly used. If the 
beam has a constant intensity out to some limiting radius and is essentially zero 
elsewhere, the beam profile is referred to as a circular beam profile. Such beam 
profiles can approximate beam profiles from laser resonators with graded 
reflected mirrors or from saturated amplifiers. If, on the other hand, the interact- 
ing beams are constrained to TEM00 modes, the beam profile is referred to as a 
Gaussian beam profile. Initially, the average power limit was calculated for a 
Gaussian beam profile and with lateral heat extraction [22]. However, similar 
analyses have been performed for several combinations of beam profiles and 
heat extraction methods [23]. 
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FIGURE 10 Heat flow in transversely and longitudinally cooled nonlinear crystals. 
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Under the assumption of radial crystal symmetry and lateral heat extraction, 
the phase mismatch can be approximated as a function of radial position, that is, 

Ak = Ak 0 - arc p2/W 2 , (54) 

Ak = Ak o - are 1 -  exp(-132/wZ)J , (55) 

for a circular and a Gaussian beam profile, respectively. In these expressions arc 
and arg can be defined as 

1 ~)nl 1 an2 1 c)n3) ~aea 
arc= X1 c)T X2 ~)T X3 ~T 2k,. (56) 

1 ~nl 1 ()n2 1 ()//3) ~aea 
a,.g- ~1 ~T ~2 ~T ~3 ~)T k,. 

(57) 

In these expressions, Oni/OT is the variation with temperature of the refractive 
index n i at wavelength ~'i, 13a is the average absorption coefficient, Pa is the aver- 
age power, and k c is the thermal conductivity. With the mismatch known as a 
function of the radial position, the conversion efficiency can be integrated over 
the cross section of the nonlinear crystal. 

To explore this effect, a simple example can be investigated that illuminates 
the salient features. Effects of phase mismatch on parametric generation, under the 
low conversion efficiency approximation, can be described in terms of a sinZ(x)/x 2 
function. A relative efficiency fir can be defined as the fractional decrease in the 
conversion efficiency caused by the effects of crystal heating. Integrating this over 
the cross section of the nonlinear crystal yields 

0 rt f0 ~'~' f ir  = (1/rtw, ? ) sin e ( A k l / 2 l / ( A k l / 2 l Z p d g d O  . (58) 

Evaluation of this integral is straightforward using numerical techniques. Refer- 
ring back to the expressions for Ak, it can be seen that there are two contribu- 
tions, a zeroth-order term that does not depend on the average power and another 
term that does. The zeroth-order term represents the residual phase mismatch in 
the absence of average power heating effects. For cases where there is no aver- 
age power heating effects, the residual phase mismatch is minimized. However, 
with average power heating effects, this term can be optimized for maximum 
efficiency. 
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Relative efficiency can be calculated as a function of the heating parameter 
for the cases of no zeroth-order phase mismatch and optimum zeroth-order 
phase mismatch. A heating parameter (a//2) can be defined substituting the defi- 
nitions of arc and a rg for a. In this expression, l is the length of the nonlinear 
crystal. Relative efficiency is plotted in Fig. 11 for two cases, one where the 
zeroth-order term is zero and one where the zeroth-order term is optimized. A 
negligible zeroth-order phase mismatch would occur if the nonlinear interaction 
were optimized at a low average power and then the average power were 
increased. An optimized zeroth-order phase mismatch would occur when the 
nonlinear interaction were optimized at the final average power. Note that the 
optimum value depends on the value of the heating parameter. As can be seen in 
the figure, by using an optimum zeroth-order term the average power term can 
be doubled. A similar calculation has been performed under the approximation 
of Gaussian beam profiles and the results are similar [23]. 

Average power limits depend on the absorption coefficients of the nonlinear 
crystal. Absorption coefficients depend on the wavelength; wavelengths nearer 
the transmission limits of the nonlinear crystal tend to be absorbed more 
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strongly. Absorption coefficients also depend strongly on purity of the crystal and 
the growth conditions. As such, the absorption coefficients can vary significantly 
from vendor to vendor and can also vary as a function of the date of purchase 
even if the crystals are from the same vendor. For many commercially available 
nonlinear crystals, absorption coefficients are on the order of 1.0 m-1 [24]. With 
absorption coefficients on this order, average power limits on the order of several 
watts appear feasible. However, optical materials with larger commercial demand 
can have significantly lower absorption coefficients. Because the heating parame- 
ter depends on the product of the average absorption coefficient and the average 
power, an order of magnitude decrease in the absorption implies an order of mag- 
nitude increase in the average power. Although absorption effects can impose 
practical limits, they can be mitigated through nonlinear crystal selection and 
crystal growth development efforts. 

Pulse repetition frequency (prf) does not enter into the preceding estimate of 
the average power limit. As defined, the absorbed power which creates a thermal 
gradient large enough to limit the effective volume of the nonlinear crystal is 
estimated If absorption of the pump power is the primary contribution to the 
heating, then the average power of the pump rather than the prf per se is the pri- 
mary factor. However, if the absorption of the signal or idler is the primary con- 
tribution to the heating, then the prf can have more of an effect. With a constant 
average power and a high prf, the pump energy per pulse decreases. If this in 
turn decreases the conversion efficiency, less heating can occur. As such, as the 
prf increases, the average power heating decreases. However, the signal and idler 
power still decrease because of the lower conversion efficiency of even the ide- 
ally phase-matched interaction. 

If even higher average power is required, the nonlinear crystal can be fabri- 
cated into a series of thin plates. The thin plates could be cooled by flowing gas 
between them. In essence, this decreases the thermal gradient by increasing the 
surface to volume ratio of the nonlinear crystal [25]. For a geometry like this, the 
longitudinal heat extraction technique is appropriate. While this technique will 
work, antireflection coatings on the surfaces will be required. A practical limit 
on the thickness of the plates will be set by the fabrication process. 

7. NONLINEAR CRYSTALS 

Many good nonlinear crystals are currently available for optical parametric 
oscillators and amplifiers and new nonlinear crystals are being developed con- 
stantly. In the early days of the development of optical parametric oscillators and 
amplifiers, only a relatively few nonlinear crystals were available. In addition, 
the available nonlinear crystals had limited utility, either because of fundamental 
reasons or because of limited size and optical quality. Lack of good nonlinear 
crystals limited development of practical devices utilizing nonlinear crystals in 
these situations. Since then, many more nonlinear crystals have been discovered 
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and the size and optical quality has improved. With continued improvements, 
optical parametric oscillators and amplifiers should find increasing use. 

Selection of the best nonlinear crystal for a particular application depends 
on several basic crystal parameters including the transparency. In approximate 
order of consideration, the nonlinear crystal parameters that must be considered 
in the selection process include range of transparency, phase matching, nonlin- 
earity, birefringence, and temperature sensitivity. The rationale for nonlinear 
crystal selection using these parameters is presented in some detail in the follow- 
ing paragraphs. Germane parameters, where available, are listed for select non- 
linear crystals in Table 1. 

Transparency is an obvious requirement for the nonlinear crystal. However, 
it has been shown that a nonlinear interaction can occur even if one of the inter- 
acting waves is strongly absorbed [26]. Beyond the obvious, it is preferable to 
avoid the absorption edges of the crystal from an average power point of view. In 
addition, in cases where the crystal has limited birefringence, phase matching 
cannot be effected near either the ultraviolet or the infrared absorption edges 
since the absorption edges exhibit increased dispersion. 

For efficient interactions, phase matching must be effected. Phase matching 
allows the entire length of the nonlinear crystal to contribute positively to the 
conversion efficiency. Nonlinear interactions can occur in situations where the 
phase-matching conditions can only be approximated by using plates cut to the 
coherence length. However, these situations require approximate phase matching 
in order to have reasonable lengths for the nonlinear crystal [27]. If approximate 
phase matching cannot be met, the coherence length and thus the nonlinear crys- 
tal length become short. In the low-conversion-efficiency regime, the conversion 
efficiency of a parametric interaction increases as the square of the length of the 
nonlinear crystal. Thus, phase matching must be possible in order to obtain long 
coherence lengths, and the concomitant long nonlinear crystal lengths, and 
therefore reasonable efficiencies. 

Efficiency of the optical parametric oscillator or amplifier also depends criti- 
cally on the effective nonlinearity. Again in the low-conversion-efficiency 
regime, the conversion efficiency depends on the effective nonlinearity squared. 
Because the effective nonlinearity depends on the orientation of the nonlinear 
crystal, the effective nonlinearity is dependent on the phase-matching conditions 
and the interacting wavelengths. Inspection of the gain coefficient shows that the 
effective nonlinearity is divided by the refractive indices. Consequently, a com- 
monly used figure of merit for nonlinear crystal selection is de2/nln2n 3. Often this 
figure of merit is plotted as a constant over the range of transparency of the non- 
linear crystal. That is, the variation of the effective nonlinearity with wavelength 
is neglected. Because conversion efficiency is directly proportional to the figure 
of merit in the low-conversion approximation, a high figure of merit is desirable. 

Effective nonlinear coefficients depend on the direction of propagation, 
polarization of the interacting wavelengths, and the point group. Given this 
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TABLE 1 Physical Properties of Selected Nonlinear Crystals a 

Point Variation Thermal 
Crystal group Transmission Index of index conduction 

ADP o 42m 0.18-1.5 1.5065 -49 .3  1.26 

e 1.4681 -0 .0  0.71 

KDP o 42m 0.18-1.7 1.4938 -34 .0  1.34 

e 1.4599 -28 .7  1.21 

CD*A o 42m 0.27-1.7 1.5499 -23 .3  1.5 

e 1.5341 -16 .7  

LiNbO 3 o 3m 0.33-5.5 2.2340 0.2 4.6 

e 2.1554 40.9 4.8 

BBO o 3m 0.20-2.2 1.6551 -16 .6  1.2 

e 1.5426 -9 .3  1.6 

KTP x mm2 0.35-4.5 1.7386 22.0 2.0 

y 1.7458 25.9 3.0 

z 1.8287 42.8 3.3 

LBO x mm2 0.16-2.3 1.5656 -1 .9  3.5 

y 1.5905 - 13.0 3.6 

z 1.6055 -8 .3  

AgGaS 2 o 42m 0.50-13 2.4508 17.2 1.5 

e 2.2924 18.3 1.4 

AgGaSe  2 o 42m 0.71-18 2.7005 77 1.1 

e 2.6759 45 1.0 

CdSe o 6 m m  0.75-20 2.5375 120 12.0 

e 2.5572 141 

ZnGeP 2 o 42m 0.74-12 3.2324 204.9 35 

e 3.2786 223.5 36 

T13AsSe 3 o 3m 1.30-13 3.3799 -45 .2  1.8 

e 3.1899 35.5 

Units ~m 10-6/K W/m K 

aRefractive indices and the variation of the refractive indices with temperature evaluated at 1.064 ~tm 
except for TAS, which is evaluated at 2.1 [.tm. Thermal  conductivities are quoted for the different 
crystallographic directions where available. In some cases, only a single value for the thermal con- 
ductivity was available. 

information, the effective nonlinear coefficient can be obtained by decomposing 
the interacting electric field vectors into the coordinate system of the nonlinear 
crystal and performing the matrix multiplication indicated in the previous sec- 
tions. However, this has already been done and the effective nonlinear coefficient 
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TABLE 2 

Point group 

Effective Nonlinear Coefficient for Uniaxial Crystals a 

Interactions 001, 010, 100 Interactions 110, 101, 011 

3 (dll cos3~-  d22 sin3~) cos0 + d15 sin0 (dll sin3~ + d22 cos3~)) cos20 
32 dll cos0 cos3~ dll cos20 sin3~ 
3m dis s in0-  d22 cos20 sin3~) d22 cos20 cos3@ 
4, 4mm d15 sin0 0 
4 (d14 sin20 + dis cos2~) sin0 (d14 cos2~ - dis sin2~) sin20 } 
42m d36 sin0 sin2~ d36 sin20 cos2~ 
6, 6mm dis sin0 0 
6 (dll cos3¢ - d22 sin3t~) cosO (dll sin3¢ + 622 cos3¢) C0S20 
6m2 d22 cosO sin3t~ d22 cos20 cos¢ 

, | 

aln this notation, 0 represents an ordinary wave and 1 represents an extraordinary wave. 

TABLE 3 Effective Nonlinear Coefficient in Biaxial Crystals 

Point group Plane Interaction 001, 010, 100 Interaction 110, 101, 011 

222 

mm2 

xy d23 cos(~ d36 sin2@ 
yz d12 COS0 836 sin20 
xz  0 d21 cos20 + d23 sin20 + d36 sin20 
xy  0 d36 sin2~ 
yz 0 d36 sin20 
XZ 0 d36 sin20 
xy d13 sin~ d31 sin2~) + d32 c0s2(~ 
yz  d31 sin0 d13 sin20 + d12 cos20 
xz d12 cos0- d32 sin0 0 
xy 0 d31 sin2@ + d32 c0s2(~ 
yz d31 sin0 0 
xz  d32 sin0 0 

aln this notation, 0 represents an ordinary wave and 1 represents an extraordinary wave. 

can be obtained by evaluating the expressions given in tables, such as Tables 2 
and 3 [28,29]. For these tables, Kleinman's symmetry condition has been 
assumed. Values for the nonlinear coefficients of several common nonlinear 
crystals are found in Table 4 [30-32]. 

Kleinman's symmetry condition reduces the number of independent contri- 
butions to the nonlinear matrix and thus simplifies the expressions. Kleinman's 
symmetry condition assumes that the components of the nonlinear matrix which 
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TABLE 4 Nonlinear Coefficients for Selected Nonlinear Materials a 

Crystal Point group Nonlinear Coefficients 

A D P  42m d36 = 0.53 

K D P  42m d36 = 0.44 

C D * A  42m d36 = 0.40 

L iNbO 3 3m d22 = 2.76 d31 = - 5 . 4 4  

B B O  3m d22 = 2.22 d31 = 0.16 

K T P  mm2 d3! = 6.5 d32 = 5.0 d33 = 13.7 

d24 = 7.6 dis = 6.1 

L B O  mm2 d31 = - 1 . 0 9  d32 = 1.17 d33 = 0.065 

AgGaS  2 42m d36 = 13.4 

A g G a S e  2 42m d36 = 37.4 

CdSe 6mm d155 = 18.0 

Z n G e P  2 42m din = 75.4 

T13AsSe 3 3m d22 = 16.0 d31 = 15.0 

aUnits of  the nonl inear  coefficients are 10 -12 m/V. 

merely permute the subscripts are equal. Conditions where this is valid can be 
met in cases where the dispersion of the electronic polarizability is negligible. 
Such conditions exist in a majority of practical crystals. Assumption of this sym- 
metry condition simplifies the expressions for the nonlinear coefficient. 

Birefringence must be sufficient to achieve phase matching and adequate 
tuning but beyond that more birefringence is not usually desirable. A large bire- 
fringence usually indicates a restricted acceptance angle and a large birefrin- 
gence angle. Both of these effects can limit the efficiency of the parametric inter- 
action. However, there are instances where angular tuning rates can benefit from 
a large birefringence. 

Temperature sensitivity arises through the variation of the refractive indices 
with temperature. Because, in general, the variations of the ordinary and the 
extraordinary refractive index with temperature are different, the phase-matching 
condition varies with temperature. If this difference is large, a small variation in 
the ambient temperature changes the phase-matching condition and adversely 
affects the efficiency. Thus, to maintain the efficiency, temperature control of the 
nonlinear crystal may be required. Although temperature control is straight- 
forward it adds complexity to the system. In high-power situations, a large dif- 
ference in the variation of the refractive indices adversely affects the average 
power limits of a given nonlinear interaction. On the other hand, a large differ- 
ence in the variation of the refractive indices with temperature may allow 90 ° 
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phase matching to be effected with a concomitant increase in the acceptance 
angle and possibly in the efficiency. 

Several of the available nonlinear crystals can be evaluated by considering the 
factors just outlined. Because of space limitations, such a survey cannot evaluate 
all of the known nonlinear crystals. Consequently, only a few select nonlinear 
crystals are evaluated here. More nearly complete surveys can be found in the lit- 
erature. In general, the nonlinear crystals can be divided into two categories, 
depending on their range of transparency. Oxide crystals will generally transmit in 
the visible and near infrared while the semiconductor materials can transmit from 
the near infrared through much of the mid-infrared region. Tables 1 and 4 summa- 
rize the important properties of the select nonlinear crystals for facile reference. 

ADP, or NH4HzPO 4, was one of the earliest nonlinear crystals to be used. 
ADP existed before lasers were invented and was useful because of its piezo- 
electric properties. As such, nonlinear crystals large enough for practical devices 
were available immediately. However, it does have relatively low nonlinear coef- 
ficients, a somewhat limited acceptance angle, and is hygroscopic. To avoid 
degrading the optical faces of a hygroscopic crystal by exposure to a humid 
atmosphere, it is often kept in a sealed container that may be heated. Because of 
the large difference in the variation of the refractive indices with temperature, 
ADP can be temperature tuned over a relatively large range. Even though several 
useful nonlinear devices have been demonstrated using this material, its use has 
been declining, primarily because of the availability of better materials. 

KDP, or KHzPO 4, was also available before the invention of the laser. KD*P, 
an isomorph where the hydrogen is replaced by deuterium, has nearly identical 
nonlinear coefficients and refractive indices but better transmission in the near 
infrared, especially beyond about 1.0 ~tm. As such, KD*P is often preferred in 
cases where a high average power is required. Use of this material as a second 
harmonic generator for Nd:YAG lasers is common. However, like ADP, this crys- 
tal also has relatively low nonlinear coefficients and somewhat limited acceptance 
angle. KDP is also hygroscopic and therefore often kept in a crystal oven. 

CD*A, or CsDzAsO 4, is an isomorph of KDP and was developed primarily 
as a harmonic generator for Nd:YAG lasers. Its nonlinear coefficients are about 
the same as the previous two nonlinear crystals, but this material can achieve 
nearly noncritical phase matching for second harmonic generation of Nd:YAG 
lasers. Noncritical phase matching provides for a significantly enhanced accep- 
tance angle and negligible birefringence angle effects. As with other KDP iso- 
morphs, CD*A is hygroscopic. 

LiNbO 3 was the first nonlinear crystal to demonstrate optical parametric 
oscillation. Nonlinear coefficients of this material are significantly larger than the 
previous three materials. However, this material suffered from optically induced 
refractive index inhomogeneities when irradiated with short-wavelength laser 
radiation. This deleterious effect can be mitigated by growing very pure materi- 
als, but it has not yet been eliminated. However, it has been discovered that this 
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effect could be annealed out if the temperature were high enough. Annealing tem- 
peratures range from about 100 to 200°C, depending on the purity of the nonlin- 
ear crystal. Another option to avoid this effect was to confine operation to long 
wavelengths, roughly longer than 1.0 gm. LiNbO 3 displays a relatively large dif- 
ference in the variation of the ordinary and extraordinary refractive indices with 
temperature making temperature tuning of nonlinear devices practical. 

KTP, or KTiOPO 4, properties allow it to overcome many of the shortcom- 
ings of the previous nonlinear crystals. KTP has large nonlinear coefficients, and 
can be phase matched to have a large acceptance angle. It is a biaxial material, 
unlike the previous materials, which are all uniaxial. Being biaxial allows a 
greater variety of phase-matching conditions to be explored in order to find a 
larger effective nonlinear coefficient, a larger acceptance angle, or both. Its ini- 
tial acceptance was hindered by the availability of sufficiently large crystals, a 
problem that has been largely ameliorated. Its ultraviolet absorption edge tends 
to limit the use of this crystal in the visible region. 

BBO, or the [3 phase of BaB204, is a nonlinear crystal that is finding appli- 
cations in the visible and near infrared. It has relatively large nonlinear coeffi- 
cients, good transmission in the visible region, and its large birefringence allows 
phase matching throughout the visible region of the spectrum. However, this 
large birefringence leads to birefringence angle and acceptance angle problems 
in some cases. It does appear that this material is slightly hygroscopic. 

LBO, or LiB305, is also a nonlinear crystal that will have applications in the 
visible region of the spectrum. It has similar transmission as BBO, but it does 
not display nonlinear coefficients as large as B BO. However, they are larger than 
those available with the KDP isomorphs. It does not suffer from the large bire- 
fringent angle effects of BBO and its biaxial nature allows a wider range of 
phase-matching conditions to be explored. It does not appear that this material is 
hygroscopic. 

CdSe has a wide range of transparency in the mid-infrared region and is one 
of the first of the mid-infrared nonlinear crystals to be useful for optical para- 
metric oscillator applications. CdSe has large nonlinear coefficients that allow 
efficient interactions to occur despite the fact that the interactions occur at longer 
wavelengths. However, it has a relatively low birefringence that can allow long 
interactions lengths, but not all desired interactions can be phase matched in this 
material. 

AgGaS 2 is an interesting crystal for several reasons other than its nonlinear 
properties. Although it is birefringent, its birefringence vanishes at one particular 
wavelength in the visible. Vanishing of the birefringence has led to other appli- 
cations such as optical filters. If near-infrared as well as mid-infrared transmis- 
sion is desired, this nonlinear crystal is a good choice. It has large nonlinear 
coefficients, but not as large as AgGaSe 2. Consequently, the latter crystal is often 
selected in preference to this crystal except in cases where better visible and 
near-infrared transmission is desired. 
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AgGaSe 2 has large nonlinear coefficients but suffered initially from limited 
transmission in the near infrared. Absorption in the near infrared has been miti- 
gated to a large extent by an annealing process. Because of the large vapor pres- 
sure of Se, this material often grows Se deficient. To overcome this, grown 
crystals have been annealed in Se-rich atmospheres. By doing this, the absorp- 
tion in the near infrared is substantially reduced. Birefringence of this material 
is sufficient to effect phase matching but not so large as to impose severe accep- 
tance angle problems. Both optical parametric oscillators and amplifiers have 
been demonstrated using this material. 

ZnGeP 2 has an even larger nonlinearity than AgGaSe 2. It too suffers from 
absorption problems in the near infrared. As this material has a high vapor pres- 
sure during growth, an absorption analogy with AgGaSe 2 is possible. Several 
approaches to lowering this absorption have been tried with varying degrees of 
success. Birefringence of this material allows phase matching of a wide variety 
of nonlinearity interactions without incurring severe birefringence effects. In 
addition, this material has better thermal characteristics than AgGaSe 2. 

TAS, or T13AsSe 3, is a mid-infrared nonlinear crystal with sufficient bire- 
fringence to allow phase matching of a wide variety of nonlinear interactions. It 
has reasonably large nonlinear coefficients that have allowed its use as a nonlin- 
ear crystal. However, as mid-infrared nonlinear crystals with even larger nonlin- 
ear coefficients are available, this material also has seen somewhat limited use. 

8. PHASE-MATCHING CALCULATIONS 

Phase-matching curves are used to describe the orientation of the nonlinear 
crystal for which phase matching will be achieved. In uniaxial crystals, the angle 
for which phase matching is achieved is usually displayed as a function of the 
interacting wavelengths. In biaxial crystals, two angles are needed to describe 
the orientation of the nonlinear crystal. Consequently, phase matching can be 
achieved at a locus of points. Thus, for a given set of interacting wavelengths, 
the locus of the phase matching angles is usually described in terms of the polar 
and azimuthal angles. To determine the phase-matching angle or angles, the 
refractive indices at the interacting wavelengths must be determined. 

A Sellmeier equation can be used to describe the variation of the refractive 
indices with wavelength. Historically several equations have been used to 
describe the variation of the refractive index as a function of wavelength. How- 
ever, the Sellmeier equation has several advantages, including a physical basis 
and the ability to describe accurately the refractive index over relatively large 
wavelength intervals. Several forms of the Sellmeier equation have been 
reported, but the form that is most usually associated with a physical basis is 
expressed as 

(59) 



7 Optical Parametric Oscillators 329 

In this expression, C represents the ultraviolet resonance wavelength squared 
and E represents the infrared resonance wavelength squared. In the same con- 
text, B and D represent the strengths of the ultraviolet and infrared absorption 
resonances, respectively. 

If the ultraviolet or infrared resonances are not approached too closely, this 
form can represent the refractive index quite accurately. As the resonances are 
approached, effects such as the finite width of the resonance and the possibility 
of multiple resonances can detract from the accuracy. Typically, by adding a sec- 
ond ultraviolet resonance, the fit may be improved; especially as the ultraviolet 
resonance is approached. For example, the refractive index of A1203 has been 
accurately expressed using two ultraviolet resonances and an unity value for A 
[33]. However, away from the resonance, a nonunity value for A can be used to 
satisfactorily describe the refractive index without the added complexity of a 
double ultraviolet resonance. 

Although the Sellmeier equation [given in Eq. (59)] has many desirable fea- 
tures, it is not universally utilized. However, to compute the refractive indices as 
well as the first and second derivatives of the refractive index with respect to 
wavelength, it is convenient to have a standard form for the expression relating 
the refractive index with the wavelength. Toward this end, original measure- 
ments of the refractive index as a function of wavelength were found and fitted 
to the standard form [34--44]. Results of the curve-fitting procedure are found in 
Table 5 for visible and mid-infrared crystals. In addition, the root mean square 
deviation between the calculated experimental values appears in Table 5. Typi- 
cally, the experimental values are presented with four significant figures beyond 
the decimal point. Except for LBO, the root mean square deviation is in the 
fourth place after the decimal point. In cases where five significant figures were 
quoted in the cited literature (specifically ADP, KDP, and BBO), the fit is much 
better. The accuracy of this approach in describing the phase-matching angle has 
been demonstrated [ 17]. 

It is useful to have the temperature dependence of the refractive index built 
into the Sellmeier equation. With this feature, temperature tuning of the nonlin- 
ear interaction can be computed in a straightforward manner. In one case, this is 
possible since the refractive indices were measured accurately at two tempera- 
tures [36]. It is very convenient to have this information for LiNbO 3 because this 
nonlinear crystal is often operated at elevated temperatures when short wave- 
lengths are among the interacting wavelengths. Operation of this nonlinear crys- 
tal at elevated temperatures helps control the optically induced refractive index 
inhomogeneities associated with the short wavelengths. If the material can be 
grown with close attention to the impurities, the optically induced refractive 
index inhomogeneities are annealed at about 105°C. Consequently, when a short- 
wavelength pump is used with this material, such as a 0.532-ktm frequency- 
doubled Nd:YAG laser, the refractive indices associated with an elevated temper- 
ature should be used. Appropriate Sellmeier coefficients can be determined from 
the following relations. 
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A = 2.33907 + 8.20 x 10 -5 ( T -  25) 

B = 2.58395 -10.47 × 10 -5 ( T -  25) 

C = 0.4588 + 1.13 x 10 -5 (T - 25) 

D = 13.8169 + 7.73 x 10 -5 ( T -  25) 

E = 519.66 

A = 2 .35084-  100.78 x 10 -5 ( T -  25) 

B = 2.22518 + 114.47 x 10 -5 ( T -  25) 

C = 0.04371 - 0 . 2 4  × 10 -5 ( T -  25) 

D = 15.9773- 107.60 x 10 -5 ( T -  25) 

E =  741.15 

for the ordinary and extraordinary Sellmeier refractive indices, respectively. In these 
expressions, temperature T is given in degrees centigrade. Operation at 105°C is 
only a small extrapolation of the refractive index data, taken at 25 and 80°C. 

In cases where insufficient data are available for complete temperature- 
dependent Sellmeier coefficients, the variations of the ordinary and extraordi- 
nary refractive indices are given for selected wavelengths [35,37,41,45--47]. Far 
from the absorption features of the nonlinear crystal, the variation of the refrac- 
tive index with temperature is relatively insensitive to the wavelength. Values for 
the variation of the ordinary and extraordinary refractive index with temperature 
are tabulated in Table 1. 

Using the Sellmeier constants listed in Table 5, the phase-matching curves 
for Type I phase matching have been calculated for the selected uniaxial nonlin- 
ear crystals listed. For these calculations, pump wavelengths are 0.355, 0.532, 
1.064, and 2.10 ~tm. Solid-state lasers make convenient pump sources for optical 
parametric oscillators because these lasers can operate either in a cw or a Q- 
switched mode. In particular, the Q-switched mode, with its short pulse lengths 
and concomitant high peak powers, is conducive to the operation of optical para- 
metric oscillators and amplifiers. Pump lasers operating at these wavelengths can 
be obtained from a Nd:YAG laser and its harmonics or from either a Ho:Tm:Cr: 
YAG or Ho:Tm:Er:YLF laser. Phase-matching curves generated in this manner 
are not intended to be an exhaustive compilation of the possibilities but rather 
are intended to suggest some of the more common situations. Other possible 
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TABLE 5 S e l l m e i e r  Coef f i c ien t s  for  Se lec ted  N o n l i n e a r  Crys t a l s  a 

Crystal A B C D E Orm s 

ADP o 1.37892 0.91996 0.01249 0.15771 5.7600 0.00015 
e 1.35302 0.80752 0.01227 0.02612 3.3156 0.00014 

KDP o 1.41344 0.84308 0.01229 0.26923 10.2480 0.00014 
e 1.40442 0.72733 0.01201 0.07974 12.4840 0.00007 

CD*A o 1.65075 0.75762 0.02218 0.03942 4.4399 0.00072 
e 1.69749 0.65313 0.02365 0.01710 7.5095 0.00065 

LiNbO 3 o 2.33907 2.58395 0.04588 13.8169 519.658 0.00022 
e 2.35084 2.22518 0.04371 15.9773 741.146 0.00025 

BBO o 1.71283 1.02790 0.01790 2.23130 138.650 0.00013 
e 1.50569 0.86544 0.01512 0.56478 248.360 0.00014 

KTP x 2.22237 0.78681 0.04746 0.67167 54.90 0.00039 
y 2.30590 0.72572 0.05387 1.00870 77.50 0.00043 
z 2.35249 0.96655 0.05812 1.24674 77.50 0.00065 

LBO x 2.07557 0.38193 0.02597 2.60858 191.04 0.00052 
y 1.61856 0.92347 0.01355 4.48336 204.16 0.00109 
z 2.00372 0.58147 0.02176 2.55777 155.84 0.00077 

AgGaS 2 o 3.02917 2.76318 0.08343 2.03585 910.181 0.00055 
e 3.31265 2.22509 0.10048 2.01258 911.484 0.00051 

AgGaSe 2 o 4.08904 2.76132 0.15669 11.72170 9502.6 0.00065 
e 4.44502 2.23490 0.20592 8.64984 7054.4 0.00032 

CdSe o 4.16222 1.82886 0.22148 2.48631 3840.03 0.00014 
e 4.01216 2.07364 0.20209 13.8169 2235.17 0.00022 

ZnGeP 2 o 4.64467 5.10087 0.13656 4.27777 1653.89 0.00048 
e 4.71534 5.26358 0.14386 2.39310 1000.82 0.00058 

T 13AsSe3 o 1.0 9.977 0.18923 0.067 400.0 
e 1.0 8.782 0.18923 0.051 400.0 

aWavelengths are in micrometers. 

c o m b i n a t i o n s  can be ob t a ined  in a s t r a igh t fo rward  m a n n e r  once  the S e l l m e i e r  
cons t an t s  are k n o w n .  

ADP,  KDP,  and  C D * A  can be used  to genera te  ou tpu t  at w a v e l e n g t h s  in the 
v is ib le  and nea r  inf rared,  to abou t  1.1 g m  or  s o m e w h a t  b e y o n d .  A D P  and K D P  
are very  s imilar ,  even  to the shape  o f  the p h a s e - m a t c h i n g  curve  (Fig.  12). C D * A ,  
on the o the r  hand ,  does  not  have  e n o u g h  b i r e f r i ngence  to be  p u m p e d  by  a 0 .355-  
g m  p u m p .  Howeve r ,  by  us ing  a 0.532-1am p u m p ,  a p a r a m e t r i c  dev ice  tunab le  at 
w a v e l e n g t h s  l onge r  than  abou t  0.85 g m  is pos s ib l e  (Fig.  13). As  phase  m a t c h i n g  
can  be ob t a ined  very  near  90 ° , long  non l inea r  c rys ta l s  m a y  be e m p l o y e d  wi thou t  
se r ious ly  a f fec t ing  ef f ic iency  t h rough  the de le te r ious  effects  o f  b i r e f r ingence .  
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Phase-matching curves for ADP and KDP for a 0.355-ktm pump. 

Tunable radiation in the near infrared can be obtained from an optical para- 
metric oscillator using a 0.532-ktm pump and a LiNbO 3 or BBO nonlinear crystal 
(Figs. 14, 15, and 16). Operation at somewhat longer wavelengths than shown in 
the figures may be possible, depending on the infrared absorption properties of 
the particular nonlinear crystal. Because of absorption, calculations were not car- 
ried out beyond 2.2 ktm in BBO and 4.0 ktm in LiNbO 3. A device based on BBO 
would be attractive because a single crystal could be used to tune over a very 
large wavelength range. On the other hand, a device based on LiNbO 3 would be 
attractive if a narrow spectral bandwidth device were desired. 

A Nd:YAG laser can be used directly as a pump source for at least three dif- 
ferent nonlinear crystals, LiNbO 3, BBO, and AgGaS 2 (as shown in Figs. 15, 16, 
and 17). In the first case, the range from about 1.4 ktm to beyond 4.0 ktm could 
be covered with a single LiNbO 3 crystal. BBO could not cover the same range 
due to transparency limitations. On the other hand, AgGaS 2 could be tuned over 
a much wider range, from about 2.0 to beyond 10.0 ktm. However, this tuning 
range would require a variation in the phase-matching angle of about 20 °. Since 
the Nd:YAG laser has enjoyed a significant amount of development, such a sys- 
tem appears to be very attractive. 
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At least five different optical parametric oscillators can be made using a 
2.10-ktm pump. A device that could tune between about 2.5 l.tm to beyond 10.0 
l.tm could be based on AgGaS 2, AgGaSe 2, CdSe, ZnGeP 2, or TlaAsSe 3 (Figs. 19 
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through 22). ZnGeP 2 could tune over this range with a variation of about 4 °, the 
smallest angular range; CdSe would require about 14 °, the largest angular range. 
AgGaS 2 does display an unusually flat tuning range about 4.2 ktm. Besides this, 
the tuning curves are in general similar, except for the direction of the curvature. 
As such, selection of the best nonlinear crystal would probably be based on con- 
siderations other than the phase matching curves. 

9. PERFORMANCE 

Optical parametric oscillators have developed from their initial stage where 
they were little more than a curiosity. Initial performance was limited by lack of 
high optical quality nonlinear crystals, nonlinear crystals with relatively small 
nonlinear coefficients, and limited pump laser performance. In addition, optical 
parametric oscillators were in competition with dye lasers in the visible and near 
infrared. Pulsed dye lasers have an advantage because laser-pumped dye lasers do 
not necessarily require high beam quality from the pump laser. In essence, dye 
lasers can serve as an optical integrator, converting a fixed-wavelength pump laser 
with relatively poor beam quality into a tunable laser with a better beam quality. 
In the face of these difficulties, optical parametric oscillators enjoyed limited com- 
mercial applications for a considerable time. However, several increases in optical 
parametric oscillator technology have improved the viability of these devices. 
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Optical quality of the nonlinear crystals has improved. Optical quality 
improvements have occurred both in the form of decreased absorption and 
decreased distortion. For example, LiNbO 3 crystals were found to suffer from 
optically induced refractive index inhomogeneities. It was found that, in part, 
these problems could be traced to Fe impurities. By decreasing the Fe impuri- 
ties, the susceptibility of optically induced refractive index inhomogeneities was 
decreased. Similarly, the short-wavelength absorption in AgGaSe 2 was corre- 
lated with a deficiency of Se. By annealing these crystals in an atmosphere rich 
in Se, the short-wavelength transmission of these crystals improved. Initially 
some nonlinear crystals were deliberately doped with impurities to reduce 
growth time and therefore cost. While some impurities are benign, others can 
cause unwanted absorption. Increased absorption can limit the efficiency and 
average power limit available with a given nonlinear crystal. In addition, some 
crystals tended to grow multidomain. That is, not all of the nonlinear crystal was 
oriented in the same manner. Multidomain crystals limit efficiency by limiting 
the effective length of the nonlinear crystal. As growth technology improved, 
many of these problems were resolved. 
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Of perhaps more significance is the introduction of better nonlinear crystals, 
particularly ones with a larger nonlinear coefficient. Of particular note in the 
way of visible crystals are KTP, BBO, and LBO. Crystals with nonlinear coeffi- 
cients as large as those available with these more recent crystals were not gener- 
ally available in the early developmental stages of optical parametric oscillators. 
In the infrared, AgGaSe 2 has developed to the point where it is presently com- 
mercially available for applications in the mid-infrared region. Although this 
crystal has been known for some time, the availability and the absorption in the 
near-infrared region limited its utility. In addition, substantial progress has also 
been made with the commercialization of ZnGeP 2. 

Pump lasers have also improved both in power and beam quality, a definite 
advantage when nonlinear optics are being used. Improvements such as unstable 
resonators and graded reflectivity output mirrors have made pump lasers with good 
beam quality as well as high energy per pulse available. The beam quality of pump 
lasers is often limited by thermal effects. However, as laser diode array pumping of 
solid-state lasers becomes more common, the beam quality should improve even 
more since the thermal load on a laser diode array-pumped solid-state laser is less 
than a similar lamp-pumped solid-state laser at the same average output power. In 
addition, injection seeding techniques have narrowed the linewidth of the pump 
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lasers. Both increased beam quality and decreased linewidth can lead to an 
increased performance for the optical parametric oscillator. 

Several different concepts are involved in the assessment of the performance 
of an optical parametric oscillator including threshold, slope efficiency, total effi- 
ciency, photon efficiency, and pump depletion. Optical parametric oscillators can 
be operated either in a cw or a pulsed mode. Of the two modes of operation, the 
pulsed mode is much more common since the operation of an optical parametric 
oscillator is enhanced by a high power density. The threshold in the cw mode is 
straightforward to define as the amount of pump power required to achieve opti- 
cal parametric oscillation. In the pulsed mode, the observable threshold, rather 
than the instantaneous threshold, is usually quoted; however, this is not always 
made clear. While slope efficiency is sometimes quoted, it could represent either 
the ratio of the increase in power at the output wavelength to the increase in 
power at the pump wavelength or the increase in power of both the signal and 
idler wavelengths to the increase in power at the pump wavelength. In the pulsed 
mode, it could be quoted at the instant of peak power or it could be quoted for the 
total output energy. Although laser theory usually predicts a nearly linear increase 
in the output with increases in the input, optical parametric oscillator theory does 
not necessarily predict the same approximation. However, in practice, a linear 
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increase of the output with the input is often observed. Total efficiency suffers 
from many of the same ambiguities as slope efficiency. It could imply the output 
power or energy at one or both of the signal and idler wavelengths divided by 
the pump power or energy. Photon efficiency normalizes the pump power and 
energy and the output power or energy by the energy of the pump and output 
photon, respectively. Thus, a unity photon efficiency would imply that the power 
or energy efficiency would be in the ratio of the pump wavelength to the output 
wavelength. Pump depletion usually compares the pump pulse transmitted 
through the optical parametric oscillator with and without oscillation occurring. 
As such, it is closest to the efficiency calculated using both the signal and idler 
as outputs. 

Optical parametric oscillation was first demonstrated using a pulsed pump 
laser, a frequency-doubled Nd:CaWO 4 laser [50]. The threshold was reported to 
be sharp and well defined at 6.7 kW, but was only achieved on about one in five 
shots. A peak output power of 15 W at a signal wavelength of 0.984 l.tm was 
reported, yielding an efficiency of about 0.002. 

Continuous wave optical parametric oscillation was reported by using a 
Ba2NaNb5015 crystal [51]. It was pumped by a frequency-doubled Nd:YAG 
laser. A threshold of 45 mW was observed when the wavelengths available 
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FIGURE 2 0  Phase-matching curve for CdSe for a 2.10-gm pump. 

ranged from 0.98 to 1.16 ~m. With 0.3 W of pump power, the available power at 
both the signal and idler wavelengths was estimated at 0.003 W, yielding an effi- 
ciency of 0.01. Later, by using a cw Ar ion laser for a pump laser, a threshold as 
low as 2.0 mW was achieved. A power output of about 0.0015 W was achieved 
at about 2.8 times threshold. While a continuous pump was employed, the output 
consisted of a series of pulses with pulse lengths ranging from 0.1 to 1.0 ms in 
length [52]. 

More efficient operation in the near infrared was obtained by two 
researchers both using LiNbO 3 as the nonlinear crystal. In one case, a frequency- 
doubled Nd:glass laser was used as the pump source [53], and the other used a 
Q-switched Cr:A1203 laser [54]. In the first case, a threshold of about 5.0 kW 
was required for a 8.0-mm crystal length. At twice threshold, a peak output 
power of 1.8 kW was achieved yielding an efficiency of 0.18. In the second case 
a threshold of 65 kW was achieved in a doubly resonant arrangement with a 
9.35-mm crystal length. With the doubly resonant arrangement, 0.22 of the peak 
pump power was converted to the signal at 1.04 ~m. On the other hand, with a 
singly resonant arrangement, only 0.06 of the peak pump power was converted 
to the signal. Although the efficiencies reported in these experiments are impres- 
sive, the output energy of these devices is in the millijoule range or less. 
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FIGURE 21 Phase-matching curve for ZnGeP 2 for a 2.10-l.tm pump. 

A device tunable across the visible region of the spectrum was produced by 
using ADP as the nonlinear crystal [55]. A frequency-quadrupled Nd:YAG laser, 
yielding about 1.0 mJ/pulse at 0.266 l.tm, was utilized as the pump. Gains were 
high enough with this configuration that external mirrors were not necessary to 
obtain significant conversion. With the 50-mm ADP crystal oriented normal to 
the pump beam, an average power conversion of the pump to the outputs in the 
visible region of the spectrum was as high as 0.25. Temperature tuning the crys- 
tal from 50 to 105°C allowed the region from 0.42 to 0.73 ~tm to be covered. 

A cw optical parametric oscillator tunable in the red region of the spectrum, 
from 0.680 to 0.705 ~tm, was demonstrated using an Ar ion laser operating at 
0.5145 ~tm in conjunction with a 16.5-mm LiNbO 3 crystal [52]. To avoid opti- 
cally induced refractive index inhomogeneities, the crystal was operated at ele- 
vated temperatures, nominally 240°C. A threshold of 410 mW was possible. At 
2.8 times threshold, 1.5 mW of output power was available even though the out- 
put mirror only had a transmission of approximately 0.0004. 

An optical parametric oscillator tunable in the mid-infrared region was 
obtained by using a Nd:YAG laser directly as the pump and a LiNbO 3 crystal 
[56]. Operation in this region of the spectrum is more difficult because the gain 
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FIGURE 22 Phase-matching curve for T13AsSe 3 for a 2.10-gm pump. 

coefficient is inversely proportional to the product of the signal and idler wave- 
lengths. To help compensate for the low gain, a 50-mm-long crystal was used. 
Using angle tuning, the spectral range from 1.4 to 4.5 ILtm could be covered. The 
threshold was 4.0 mJ when the oscillator was operating near 1.7 l.tm. An energy 
conversion efficiency of O. 15 was reported. 

Optical parametric oscillation further into the mid-infrared region was pos- 
sible by using a CdSe crystal. Initially, a Nd:YAG laser operating at 1.83 ktm was 
used as the pump [57]. Later, a HF laser, operating around 2.87 ktm was used for a 
pump [58]. In the former case, threshold for a 21-mm crystal length was observed 
to be between 0.55 and 0.77 kW. A power conversion efficiency of 0.40 was 
inferred by measuring the depletion of the transmitted pump. In the latter case, 
threshold for a 28-mm crystal length was found to be 2.25 kW. At about twice 
threshold, a signal power of 0.8 kW was observed that indicated a power efficiency 
of 0.15. By employing angle tuning, a signal was generated over the range from 
4.3 to 4.5 ~m. Corresponding to this, the idler was tuned between 8.1 to 8.3 l.tm. 

Optical parametric oscillator operation can be enhanced by utilizing a mode- 
locked pump [59]. For one set of experiments, a mode-locked Nd:glass laser, 
operating at 1.058 ktm, was amplified to produce an output of 0.55 J. By using an 
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etalon in the Nd:glass laser resonator, the pulse length could change from 7 to 60 
ps. Using a KDP crystal, this produced about 0.15 J of second harmonic. A 
LiNbO 3 crystal with a length of 20 mm was utilized as the nonlinear crystal. It 
was housed in an oven to allow temperature tuning. With the optical parametric 
oscillator tuned to 0.72 ktm, an output of 6 mJ was achieved. To utilize the peak 
power associated with the pump, the length of the optical parametric oscillator 
had to be adjusted so that the circulating pulse was in synchronism with the inci- 
dent pump pulse train. With a 7.0-ps pulse length, a change in the length of the 
resonator in the range of 0.1 mm produced a factor of 10 change in the output 
energy. In a different experiment, a mode-locked Ho:YAG laser was used to 
pump a CdSe optical parametric oscillator [60]. A similar enhancement in the 
conversion was effected by using the mode-locked pump pulse train. 

An attractive optical parametric oscillator for use in the mid-infrared region 
was demonstrated using AgGaSe 2 as the crystal. Although CdSe could Cover 
much of the mid infrared, its limited birefringence limited its tuning capability. 
However, much of the mid infrared could be covered using long-wavelength 
pump lasers including a 2.04-ktm Ho:YLF [61] or a 1.73-ktm Er:YLF [17] laser. 
Use of a 23-mm crystal length with the 1.73-ktm pump resulted in a threshold of 
3.6 mJ. A slope efficiency, measuring only the signal at 3.8 ~m, of 0.31 at 1.5 
times threshold was achieved simultaneously. On the other hand, with the 2.05- 
ktm pump, a threshold of 4.0 mJ was achieved along with an energy conversion 
into both the signal and idler of 0.18. 

Substantial energy conversion has been demonstrated using BBO as the 
nonlinear conversion by two different groups. Both groups used the third har- 
monic of a Nd:YAG as the pump. In one case, two opposed crystals, one 11.5 
mm in length with the other 9.5 mm in length, were used to minimize birefrin- 
gence angle effects [62]. Efficiency in this case is defined as the sum of the sig- 
nal and idler energy output divided by the incident pump energy. Here signifi- 
cant saturation in the conversion efficiency was observed, nearly 0.32; that is, 7 
mJ of output energy for 21 mJ of pump. In the other case, a 10-mm crystal 
length yielded a quantum conversion efficiency as high as 0.57 at a signal 
wavelength of 0.49 ~tm by double passing the pump through the nonlinear 
crystal [63]. 

By simply using more energetic pump lasers, more output energy can be 
obtained. By using a Nd:YAG oscillator and amplifier, a pump energy of about 
0.35 J/pulse could be obtained. Using two opposed KTP crystals 10 mm in 
length, for birefringence angle compensation, a nearly degenerate optical para- 
metric oscillator was demonstrated [64]. Signal and idler wavelengths were 1.98 
and 2.31 ktm, respectively. The threshold for this arrangement was about 100 mJ 
and the slope efficiency was as high as 0.48. At the full input energy, 0.115 
J/pulse was produced. Even higher energy per pulse could be obtained by simply 
scaling the device in cross section while retaining the same energy density. 
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10. TUNING 

Tuning of the optical parametric oscillator can be handled using the same 
techniques as described in the chapter on solid-state lasers (Chapter 6; see also 
Chapter 2). However, significant differences do exist that can be attributed to the 
difference in the operating principles of the two devices. Some of these differ- 
ences are manifest in the coarse tuning available with phase matching of the 
optical parametric oscillator and in the time-varying instanteous gain, which has 
to be taken into account if injection seeding is to be utilized. However, because 
many of the tuning and line narrowing elements are discussed in Chapter 6, they 
will not be discussed here. Rather, the tuning aspects unique to the optical para- 
metric oscillator will be emphasized. 

Coarse tuning of the optical parametric oscillator can be accomplished using 
either angular or temperature tuning. In fact, any effect that causes a differential 
change in the refractive indices at the pump, signal, and idler wavelengths could 
be used to effect tuning. For example, tuning could be achieved using an applied 
pressure through the stress optic effect. However, to date, only angular or tem- 
perature tuning has received wide application. To calculate the tuning rate, the 
partial derivatives of the phase mismatch can be used. According to a theorem in 
partial differential calculus, 

Ox I-OY l Oz l =-1 (60) 

Using this relation, the tuning rate can be approximated by 

~ OAk/()O 
~---0 = - O A k / O ~  (61) 

for angular tuning and 

~---T = -  ~Ak/~)-----~ (62) 

for temperature tuning. To evaluate the derivatives of Ak with respect to the direc- 
tion of propagation and temperature, the results of Sec. 4 can be used. Thus, 

~)Ak_2rt(1 Oni 1 ~n2 1 ()n3) 
c)--O- ~l ~)0 ~2 c)0 ~3 (90 (63) 

in general. Of course, the partial derivative with respect to angle for ordinary 
waves is zero in uniaxial crystals. For temperature tuning, 
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~)Ak =2~;(1 ~)n, 1 ~n2 1 ~)n3) 
~---T 2, 3~ 2~ ~7" ~ ~T (64) 

Individual partial derivatives with respect to angle are evaluated in Section 4. 
Partial derivatives of the index of refraction with respect to temperature are 
listed for the more common crystal in Section 8. Thus, to determine the particu- 
lar wavelength that will be generated, the phase-matching condition can be cal- 
culated as done for a variety of situations in Section 8. Tuning near the phase- 
matching condition can then be found by using the preceding equations. 
Linewidth can be determined by using the approach also described in Section 4. 

Injection seeding of an optical parametric oscillator can be accomplished in 
much the same way as injection seeding of a solid-state laser. Injection seeding 
has been demonstrated for several optical parametric oscillators operating in the 
visible and mid-infrared regions [65-67]. However, there are several significant 
differences between seeding an optical parametric oscillator and injection seed- 
ing a solid-state laser [67]. One of these differences occurs during the critical 
pulse evolution time interval. During this phase of the development, not much 
energy is extracted. However, the spectral properties of the output are deter- 
mined by the competition between the seeded and unseeded modes. In a solid- 
state laser, the gain is nearly constant since the stored energy or the population 
inversion density is nearly constant. In an optical parametric oscillator, the gain 
varies with the pump power. Thus, for a pulsed pump, the gain varies with time. 
Although this makes the description of the competition more complex, it does 
not prevent seeding. A second difference is in the extraction of the energy. In a 
solid-state laser, as the seeded mode extracts the energy stored in the upper laser 
level, it hinders the development of the unseeded mode by decreasing its gain. 
However, in an optical parametric oscillator, there is no stored energy. Thus for 
injection seeding to be highly successful, the seeded pulse should continue to 
extract the energy from the pump pulse as fast as it arrives at the crystal. A third 
difference exists in the saturation effect. In a solid-state laser the laser pulse 
extracts the energy stored in the upper laser level to the point where the gain 
falls to zero. However, in an optical parametric oscillator, the gain may not fall 
to zero in the presence on the seeded pulse. A nonzero gain allows the unseeded 
modes to continue to extract energy from the pump and thus decrease the effi- 
cacy of the seeding process. 

In doubly resonant optical parametric oscillators, spectral output of the device 
may be unstable due to an effect referred to as the cluster effect. If both the signal 
and idler are resonant, oscillation can only occur at frequencies that satisfy both 
the conservation of energy and the resonance condition. Because of these simulta- 
neous requirements, the frequencies that oscillate may not occur at the minimum 
phase mismatch as shown in Fig. 23. By operating away from the point at mini- 
mum phase mismatch, the output can be significantly reduced. Worse still, the 
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Cluster effects in doubly resonant devices. 

closest set of frequencies that satisfies both the resonance condition and the con- 
servation of energy can vary on a shot-to-shot basis. For example, the pump fre- 
quency may experience small variations caused by small variations in the level of 
excitation of the pump laser. A small variation in the pump frequency may cause a 
much larger difference in the frequencies that satisfy both the conservation of 
energy and the resonance condition. Due to instabilities associated with the cluster 
effect, the doubly resonant optical parametric oscillator is often avoided. 
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