Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Novel UV–vis-driven photocatalysts of CeF₃/TiO₂ nano-sheet film with upconversion properties for enhanced photocatalytic activity

Jun Wan^{a,1}, Lin Sun^{a,1}, Enzhou Liu^a, Jun Fan^{a,*}, Xiaoyun Hu^b, Chenchen Pu^a, Juan Li^a, Xiao Du^a

^a School of Chemical Engineering, Northwest University, Xi'an 710069, PR China^b School of Physics, Northwest University, Xi'an 710069, PR China

ARTICLE INFO

Article history: Received 5 November 2015 Received in revised form 24 December 2015 Accepted 16 January 2016 Available online 17 January 2016

Keywords: CeF₃ Upconversion TiO₂ Thin films Composite materials UV-vis light

1. Introduction

Extended utilization of sunlight from ultraviolet (UV) to visible (vis) and nearinfrared (NIR) light is an attractive issue for the photocatalyst development [1,2]. Nowdays, the common TiO₂based photocatalysts reported are still limited to ultraviolet (UV) light that only occupies ca. 5% in the solar spectrum, while visible light (~48%) and near infrared (NIR) light cannot be effectively utilized [3]. Intensive investigations have been carried out to extend light utilization of TiO₂, including coupling with other narrow band gap semiconductors [4], metal ions or non-metal elements doping [5,6] and deposition of noble metals [7]. However, they are inevitably confronted with several disadvantages, such as poor stability, relatively low visible light absorption and the difficult separation of electron-hole pairs [8-10]. Combination of upconversion materials (UCM) have attracted tremendous interest in recent years to increase the utilization of light for TiO₂ photocatalysts [11-13]. Nevertheless, the reported UCM are mostly excited by NIR light, few attention has been paid to the development of visible-driven TiO₂ upconversion photocatalysts aiming to

http://dx.doi.org/10.1016/j.matlet.2016.01.069 0167-577X/© 2016 Elsevier B.V. All rights reserved.

ABSTRACT

Upconversion photocatalysts have the potential to extended utilization of sunlight and enhance the photocatalytic performance. A novel hybrid architecture of CeF_3/TiO_2 nano-sheet film (NSF) was synthesized via a facile one-step microwave-hydrothermal synthesis. The luminescence agent of CeF_3 nanodisks were deposited homogeneously on the surface of the TiO_2 NSF. The CeF_3/TiO_2 NSF composite materials show obvious photodegradation of MB under visible light as well as ultraviolet light, resulting in enhanced photocatalytic activity in the UV–vis bands solar spectrum due to the efficient upconversion emissions of CeF_3 . Additionally, a photocatalytic mechanism of CeF_3/TiO_2 NSF was proposed.

© 2016 Elsevier B.V. All rights reserved.

improve light utilization of solar energy in the visible region.

Fluorides have been proved to be promising upconversion luminescence agents, and some fluoride compounds, such as lanthanide-doped CaF₂ [14], YF₃ [15] and NaYF₄ [16], have been reported in the synthesis with TiO₂ photocatalysts to increase the light harvesting. However, there are few reports that focus on the upconversion fluorescence properties of CeF₃ and the synthesis of photocatalysts for the CeF₃-enhanced photocatalytic system. Generally, the particle size, crystal structure and contact form have a significant influence on the properties of upconversion photocatalysts, such as luminescence efficiency and energy transfer from the UCM to the TiO₂ [17,18]. In our previous work, we have introduced the luminescence process of CeF₃, and CeF₃/TiO₂ particles are synthesized in chaotic mixed form [19]. Therefore, in this work we intended to extend our previous work by directly in-suit forming CeF₃ with uniform morphology and size on the surface of TiO₂, which should be a more optimal choice to achieve the best photocatalytic performance. Here, a hybrid architecture comprising CeF₃ nano-disks dispersed on TiO₂ nano-sheet film () was fabricated using a facile one-step microwave-hydrothermal synthesis. The underlying growth mechanism was discussed. The interesting CeF₃/TiO₂ hybrid system exhibit excellent upconversion luminescence properties and photocatalytic activities for the degradation of MB. Finally, a photodegradation mechanism was proposed as well.

^{*} Corresponding author.

E-mail address: fanjun@nwu.edu.cn (J. Fan).

¹ Jun Wan and Lin Sun are co-first authors; they contributed equally to the work.

2. Experimental

The detailed materials preparation and characterizations are available in ESI.

3. Results and discussion

The morphologies of the samples were investigated by SEM and TEM. The overall appearance of the TiO₂ NSF is shown in Fig. 1 (a), which consists of a large number of continuous distributed nanosheet films. It has a large surface area to provide more active sites for photoreaction. And the nanosheet film structure is regard as a wonderful substrate for the growth of UC materials [7]. Fig. 1 (b) and (e) showed the typical SEM and TEM images of the asprepared CeF₃, it can be seen that the CeF₃ exhibit fascinating chain structures which built from many nanodisks in a particular way of layer-by-layer. As the assembled unit, the mean thickness and diameter of the nanodisks are measured to be about 70 nm and 190 nm. Fig. 1(f) gives a magnified cross-section view of the nanodisks, the side surface of CeF₃ is not smooth, which indicates that the nanodisks have a hierarchical architectures. Besides, the nanodisks assemble together into aggregates in a way of surfaceto-surface contact. The HRTEM image (Fig. 1(g)) of the nanodisk (shown in Fig. 1(f)) makes clear that it is a single crystal and the fringe spacing is about 3.25 Å, which corresponds to the crystal spacing of the (111) lattice plane in the CeF3 crystals. Fig. 1(c) and (d) illustrates the morphology of CeF₃ deposited TiO₂ NSF. It is apparent that the CeF₃ nano-disks are in-situ synthesized on the surfaces of TiO₂ nanosheet film. The CeF₃ nanodisks are separated independently in the hybrid system, which indicate that the composite of CeF₃ and TiO₂ restrain the self-assembled process of CeF₃. Besides, there is no barrier between the CeF₃ nanodisks and TiO₂ NSF by the direct surface-to-surface contact, greatly facilitating the energy transfer between the two materials.

Fig. 1(h) gives XRD patterns of the CeF₃, TiO_2 NSF and CeF₃/ TiO_2 NSF. All the diffraction peaks of the samples are in good agreement with those of the hexagonal phase CeF₃ (JCPDS no. 08-0045) and

anatase TiO₂ (JCPDS no. 21-1272). The CeF₃/TiO₂ NSF composite exhibits distinct diffraction peaks corresponding to CeF₃ and TiO₂, reflecting a two-phase composition in the composite. These narrow and strong diffraction peaks of the samples suggest that the CeF₃ nanodisks and TiO₂ NSF is highly crystallized. According to the analysis above, the corresponding synthesis strategy is schematically depicted in Fig. 2.

The UV–vis diffuse reflectance spectra of the samples are shown in Fig. 3(a). It can be seen that CeF₃ exhibits a relatively weak absorption in the whole region. However, TiO₂ NSF exhibits good absorbance in the ultraviolet and visible light region, which indicates that the unique nano-sheet films structure of TiO₂ is good for light harvest. Stronger absorption can be observed both in the UV–vis light regions for the CeF₃/TiO₂ NSF composite compared to pure TiO₂, indicating that the synthesis of CeF₃/TiO₂ hybrid system favor better light absorption. Additional UV–vis DRS of other CeF₃/TiO₂ composites with different CeF₃ contents are also recorded and are shown in Fig. 3(a). It can be found that 0.03 M CeF₃/TiO₂ NSF exhibits the highest absorption intensity compared to other CeF₃/TiO₂ composites.

UC photoluminescent spectra of the CeF₃ are shown in Fig. 3(b). Under 525 nm visible light excitation, a strong peak appear in the UV region center at 325 nm, which can be assigned to the 5D \rightarrow ²F_{7/2} transitions of Ce³⁺ ions. In addition, a relative weak UV emission peak at 325 nm can be also found under the excitation wavelength of 554 nm, 781 nm and 852 nm (Fig. S1). The phenomenon demonstrates that the upconversion is dominated by a two-photon excitation process of visible light and a three-photon excitation process of NIR light [17]. After combining with TiO₂ NSF, one can find that the UV emissions from the CeF₃ nanodisks decreased evidently, suggesting that most UV emissions have been absorbed by the TiO₂ NSF, which will improve the photocatalytic performance under visible irradiation.

The photocatalytic performance of the samples were evaluated by degradation of methylene blue (MB) under different irradiation bands of a Xe lamp (Fig. 3(c)), the details of the photocatalytic activity measurement were shown in the ESI. The C/C₀ conversion plots for MB degradation showed that MB was very stable in the

Fig. 1. SEM images of prepared samples: (a) TiO₂ NSF, (b) self-assembled CeF₃ nano-disks, (c) and (d) CeF₃/TiO₂ NSF hybrid system; (e) and (f) TEM image of the CeF₃ nano-disks, (g) HRTEM image of the nano-disk; (h) XRD patterns of the samples.

Fig. 2. Schematic illustration of the synthetic procedure for the preparation of CeF₃ nano-disks and CeF₃/TiO₂ NSF hybrid.

Fig. 3. (a) UV–vis diffuse reflectance spectra of the samples; (b) upconversion luminescence spectra of CeF₃ and CeF₃/TiO₂ NSF; (c) comparison of photocatalytic activities of CeF₃ and CeF₃/TiO₂ NSF under different irradiation bands; (d) photocatalytic degradation of MB as a function of irradiation time for different samples under visible light.

Fig. 4. The proposed photocatalytic mechanism of the $\mbox{CeF}_3/\mbox{TiO}_2$ NSF hybrid materials.

absence of photocatalysts. When the CeF₃/TiO₂ NSF was irradiation under visible light, a notable decrease in MB concentration was observed within 60 min, while the TiO₂ NSF has no obvious catalytic activity in the visible light region. This result implies that the CeF₃/TiO₂ NSF can serve as visible-driven photocatalysts, the better performance of CeF₃/TiO₂ NSF composite should be attributed to the upconversion fluorescence properties of CeF₃. At the same time, a much faster degradation of MB solution by CeF₃/TiO₂ NSF can be realized under the UV-vis light irradiation compared to the pure TiO₂ system. The photocatalytic mechanism of the prepared CeF₃/TiO₂ NSF under the UV–vis light shown in Fig. 4. The TiO₂ NSF can directly excited by UV light and produce electron-hole pairs to activate photocatalytic reactions. When the hybrid system are exposed under visible light, the CeF₃ nanodisks can serve as a light transducer, which could upconvert two visible photons to be a UV photon, and the upconversion emissions of UV light will be

directly harvested by TiO₂ NSF. The excited electron-hole pairs will generate reactive species ($\bullet O_2^-$ and $\bullet OH$) in solution for the photocatalytic oxidation. As a result, the CeF₃/TiO₂ NSF composite exhibits an excellent UV-vis light photocatalytic activity by increasing the utilization of light.

To further investigate the influence of CeF₃ on photocatalytic performance of CeF₃/TiO₂ NSF, additional experiments were carried out under visible light irradiation (Fig. 3(d)). It could be found that the degradation of MB by CeF₃ nanodisks is negligible, but the MB solution can be slight decomposed by pure TiO₂ attributed to large surface area and good light harvest capability, which will promote the self-degradation of MB solution. The CeF₃/TiO₂ NSF samples show a significantly stronger catalytic efficiency than that of CeF₃ and TiO₂. These results further confirm that the UCM of CeF₃ is the critical factor for the high photocatalytic activity of hybrid system where more visible light energy could be used. Moreover, it is clearly seen that the degradation efficiency of MB are affected by CeF₃ concentrations in the samples. The 0.03M CeF₃/TiO₂ NSF heterostructure exhibits the highest photocatalytic activity among these catalysts, the overload of CeF₃ will decrease the light absorption by TiO₂ NSF and reduce energy transfer from the CeF_3 to the TiO₂. As a consequence, the appropriate loading CeF₃ on the surface of TiO₂ NSF is beneficial to the photocatalytic performance due to the UC fluorescence of CeF₃.

4. Conclusion

In summary, a novel UV–vis photocatalyst of CeF_3/TiO_2 NSF with upconversion properties was synthesized via a facile onestep microwave-hydrothermal synthesis. As the upconversion photocatalyst, these hybrid materials can work under both UV and vis bands, and show excellent photocatalytic activities for MB degradation and strong upconversion fluorescence of CeF_3 . The effect of CeF_3 concentration on their photocatalytic activities also has been discussed. This strategy may also be applied in design and fabrication of other photocatalysts to improve light utilization of solar energy.

Acknowledgments

This work was supported by the National Natural Science

Foundation of China (Nos. 21306150, 21176199, 21476183 and 51372201), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20136101110009), the Natural Science Foundation of Shaanxi Province, China (No. 2015JM5159), and the Scientific Research Staring Foundation of Northwest University (No. PR12216).

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.matlet.2016.01. 069.

References

- [1] Y.H. Sang, Z.H. Zhao, M.W. Zhao, P. Hao, Y.H. Leng, H. Liu, Adv. Mater. 27 (2015) 363–369.
- [2] S.Q. Huang, Z.Y. Lou, A.D. Shan, N.W. Zhu, K.L. Feng, H.P. Yuan, J. Mater. Chem. A 2 (2014) 16165–16174.
- [3] W.K. Su, M.M. Zheng, L. Li, K. Wang, R. Qiao, Y.J. Zhong, et al., J. Mater. Chem. A 2 (2014) 13486–13491.
- [4] Z. Liu, X.Z. Liu, D.Z. Lu, P.F. Fang, S.J. Wang, Mater. Lett. 130 (2014) 143–145.
- [5] S. Obregón, G. Colón, Chem. Commun. 48 (2012) 7865–7867.
- [6] J. Lua, L.H. Li, Z.S. Wang, B. Wen, J.L. Cao, Mater. Lett. 94 (2013) 147-149.
- [7] E.Z. Liu, L.M. Kang, Y.H. Yang, T. Sun, X.Y. Hu, J. Fan, Nanotechnology 25 (2014) 165401.
- [8] K.E. Neerugatti, C.R. Praveen, M. Giridhar, Photochem. Photobiol. Sci. 14 (2015) 1227–1237.
- [9] Z.H. Xu, J.G. Yu, Nanoscale 3 (2011) 3138-3144.
- [10] X. Fan, J. Wan, E.Z. Liu, L. Sun, Y. Hu, J. Fan, Ceram. Int. 41 (2015) 5107–5116.
- [11] Q.L. Ye, X.X. Yang, C.L. Li, Z.Q. Li, Mater. Lett. 106 (2013) 238-241.
- [12] M.H. Zhang, Y. Liu, J.D. Yu, X.H. Pan, S. Yoda, Mater. Lett. 66 (2012) 367–369.
- [13] S.Q. Huang, L. Gu, C. Miao, Z.Y. Lou, N.W. Zhu, H.P. Yuan, et al., J. Mater. Chem. A 1 (2013) 7874–7879.
- [14] P. Tian, H. Hu, H. Wang, X.Y. Liu, C.X. Ding, Mater. Lett. 117 (2014) 98-100.
- [15] L. Ren, Qi Xi, Y. Liu, Z. Huang, X. Wei, J. Li, et al., J. Mater. Chem. 22 (2012) 11765–11771.
- [16] Y.N. Tang, W.H. Di, X.S. Zhai, R.Y. Yang, W.P. Qin, ACS Catal. 3 (2013) 405-412.
- [17] Y. Chen, T.M. Liu, C.L. Chen, R. Sun, S.H. Lv, M. Saito, et al., Mater. Lett. 92 (2013) 7-10.
- [18] S.Q. Huang, N.W. Zhu, Z.Y. Lou, L. Gu, C. Miao, H.P. Yuan, et al., Nanoscale 6 (2014) 1362–1368.
- [19] C.N. Tang, W.Q. Hou, E.Z. Liu, X.Y. Hu, J. Fan, J. Lumin. 154 (2014) 305-309.