

Joronal of Alloys and Compounds 225 (1995) 45-47

Optically-detected nuclear quadrupole resonance of Eu³⁺ in LaF₃

G.K. Liu, Russin Cao *, J.V. Beitz Charley Millin Agens Natural Lebratory Agens R. 6009, 024

diminant.

We represe optically-detected sortists quidenpide verticants (ODNQR) of Bu³⁺ in LaF₂. The anomalous student quidenpide moments of ⁴⁰Eu³⁺ and ⁴⁰Eu³⁺ independence base momented by detecting relativestic quidenpide verticance which estimates the ²F₂ ++⁴D₀ optical terminities. Due to significant second-order hyperform concellection, the investigation quidenpide splitting in the general wave is any 5.95 MNz. In surface of the ODNOR spectrum, an affective methan quidenpide Hamilton is disjoint in the general wave is may 5.95 MNz. In surface of the ODNOR spectrum, an affective methan quidenpide Hamilton is disjointiated and the measured quidenpide opticings are used to determine the quidenpide interaction parameters for the general term ²F₂. For ¹⁰Fe, p¹⁰ = 2.67 and q¹⁰ = 0.58, and for ¹⁰Fe, p²⁰ = 0.49.

Kijkenie Cytlebel, dechi znazana Neder (polojoh koner

1. Introduction

For mission mangious his in the ground state TR. imperfact and electronic Zatanta officer would in fine order. To consider the contribution of leighter order invertice coupling, the parities page-this patternist of ¹⁶Pa²⁺ and ¹⁰Pa²⁺ isomore are unconsiderily tasell because the successive ender hyperfiles accessing while the TP, state and the organi-field induced Amining no of epportie alon suit comparable magnitude to the intrinsie connect of the Ra sunbas[1,2]. This cancellation is a same all phonomenon with some multifaction depending on the probability divisionment. For this research, andregional NME or motions guideligned establishes (NOR) of Ea¹⁺ in solids have not have momental. The accumulate metical quadrupole monocate of minutant sumption ³⁹⁴ Ro and ⁴⁰⁵ Eo have only been monated by spectral lasts become and optimally-detected motions quadrupole common (ODNOR) as provide all reported fm Buf+:YAKO, [3, 4], Do3+:YLiF., [3] East+:CuF2 [4]. and EuVO, [7].

In this paper, we report an ODNOR study of Eo⁴⁺ dependence LaF₂, Single crystel LaF₂ doped with triation two cards 1000 is a later material and optically detected magnetic managers of Pr³⁺ in this later was also m-

92<u>1-03692509</u>70 — 1997 Marster Gabier 5.8. All eight married 2004 0925-8³⁸⁸(94)810006-7 partical. (8) 7a our knowledge, this à dus fina seport. of ODNOR work on Bar+LaFy. Because of the law die symmetry (C_1), we expect that the Tu¹⁺ loss in LaR, would have a costh greaser non-min) quadruppie interaction than if the postdactly shalled systems. Noclear quadropie aways busis of the ground-state ${}^{1}\!\mathrm{F}_{\mathrm{p}}$ of ¹⁵³Bu³⁺ and ¹⁵⁶Bu³⁺ have have manuated. As anfeering Resultantian combining the contributions of preudogasdrupolo suò pare gasdrupole interactions a discontined to obtained the decominents to brackout of the quadropole inversedon parameters. Thes, the parameters are dependent with the closered solutions. Discussion is given to the differences between the gandropole lowerstign parameters sintained is this work. stil die personsen inparted for giv and radiation isotopes in other systems.

2. Esperimental datalla

A single frequency CW dye have (discriminity <0.5MHz) pumped by an argon los later and a effisynchronizer were area in the optical radio-frequency (rf.) double measures experietures on a single repeat Bu^{p+} (0.1%):LaF. The sample was in the center of a transband traveling-wave rf. cell places in a superroundecting suggest explored with optical transband. The unique was excitationally intradiated at logicid bellan

^{*} Perminent Addrew Department of Physics, Weban Lisberthy, Weban, Persuits Expiritie of Office.

remperature with the later at a fluid frequency in subspice the optical excitation between the ground sizes T_0 and the excited state D_0 . The astantion or spectral hole-burning effect is a result of redistribution of the granted-state populations by piecess of optical pumpleg, within the inhomogeneous absorption profile of the $T_0 \leftrightarrow^2 D_0$ constition converted at 17 286.5 mm⁻¹. The inhomogeneous line width for this transition is 3 Gife. The r.f. was amplified by a broad band amplifier to 2-6 W and wrapt while the complete manifest was substant with a monocrementer and astalization with a phonomalipier and a personal computer or a digital radificatory.

Europhan has two hotopes with simpet equal abundame, 44.77% ¹⁰En and 52.23% ¹⁰En. Buth incomes of 10^{3*} have a codear spin summers I-5/2. At zero exercisi magnetic field, the outlear quadruple barerration and percent other hyperfire coupling split the ground state "Pe and the contact state "De into threat hyperfine levels (f, = \pm 1/2, \pm 3/2, \pm 5/2) expension on the order of 10 MBs. Since the spinnings me larger than the laser linewidth, optical excitation is only free one appending level for an Eu⁶⁺ icm. This level can be easily detriated at law unspendance because of the slow osciest aslanding between the hyperfine levels. At temperature below 10 K, the spectral hold burning process in Eu^{a+}.LaF, betrains way efficient for the Fe⇔³D₀ comehine. With a laser power of 100 mW and formed been the of ~ 200 are in the annals, the $^{\circ}D_{0} \rightarrow ^{\circ}P_{0}$ finarcaence intensity was reduced to 5% of he cardiaban when the integrations was below 4 K. The rfl-induced magnetic dipole considers between the hyperfine levels tend 20 squaltes the populations and result is a large cohesconeri 🍽 the optical abperpises out therefore the fluorenceses emirely.

In Fig. 1, the OBNOR spectrum of ³³⁴En²⁺ and ¹⁰⁰Eu⁴⁺ in the ground zero is shown. The ${}^{\circ}D_{0} \rightarrow {}^{\circ}P_{1}$ finareactace at 16 329 cm⁻¹ was morthword to obtain this meetrum. The accepted r.f. transition frequencies are listed in Table 1. Because ¹⁶⁶Ba kay a anallar quadrupols means^{ar} than ^{wo}Es, the first two lines in the spectrum are assigned in the $\pm 1/2 \leftrightarrow \pm 3/2$ and $\pm 3/2 \leftrightarrow \pm 3/2$ considers in ¹⁶⁷Bu. The line at 26.2 MHz is assigned to the $\pm 3/2 \leftrightarrow \pm 9/2$ crankting in ¹⁶⁷Bu. Close has at 17 MDz is due to two transitions. The $\pm 1/$ $2 \leftrightarrow \pm 5/2$ transition in ¹⁰En and the $\pm 1/2 \leftrightarrow \pm 3/2$ transition in ¹⁰⁷En colonidentally createn et the word position. A very meak line at 43.3 high for the $\pm 1/$ 2++ ±5/2 manufact in ""Es was the obtained. The alightly arranged in the shape of the ODNOR sectors. shows in Fig. 1 is due in Society ashmation and beloreturning process. After the r.L. full, was make of execanses with a appendixe upliving, it took 10 to 100 are (depending on (corporation and laser intendity) for the graph to reach to opullization. In our equivalents this officit was dominated by the curdear relation.

Fig. 1. OURSELE spectrum of ²⁰ Her³⁺ and ¹⁰ He³⁺ in LaT, is 4.7. The ⁷T₀ \rightarrow ⁷T₀ system transition over M De cardes of De bisconparame parties at 177854 and ¹⁰. The ⁷D, \rightarrow ⁷T, Represence of 16/58 cm⁻¹ and attributed while De *r*.2. India of 1.4 Gross over compt at 10 kHz s⁻¹ and its Mix par trap. The Mixe principation was perpendicular to De separat could.

1993a (, Gandespula splittlage and instruction parameters of Ed¹⁶ KeP₁ is Tak grapping stars ⁷14 (1914)

		19 _{BM}
±17 17	4.04	17.1
±17 ↔ 12	9.54	24.2
£	2.67	680
7	006	0.41

The asymmetric line shaps because more significant when the r.f. ensay rate was taken than 1 MRz ε^{-1} . The excitated line width for the \pm f. transition at 6.95 MRz is 0.3 MRz, and it becomes betweer for the higher frequency litter. We believe this is due to the informogeneous browdening of the r.f. transitions.

3. Discussion

The hyperine spiring of a J-0 state in Es²⁺ im in crystals has considered as been the lattice, from the f-electrons, and from compling ¹⁰ closed shells whom charge distribution is discovering analysis of quadcharge distribution for Ec²⁺ in general are be found in the literature [1,2]. The protect work is foound to experimental momentment of the general-state quadcuptie spitting. A simplified Hamiltonian is fixed for analysis of the ¹⁰Es and ²⁰Es independent in the forstate of the ¹⁰Es and ²⁰Es independent in the forsinglified Hamiltonian curvisions for work is footned interaction and the second resist magnetic hyperfine mapping, an pseudoquadrupole interaction, into one framework. At the absence of structure integratic field, the Hamiltonian rakes the form [4]

$$H = P[[L^2 - \frac{1}{3}I(l+1)] + \frac{1}{3}\eta(L^2 - L^2)]$$
(1)

where P is the effective quadrupole interaction parameter, η the effective field gradient asymmetry parameter. This Handhumlan is disgonalized on the basis of $[I, I_{i}]$ to calculate the eigenvalues which we can assume in ODNOR asymptotes.

First the eigenvalues of the above Hamiltonian have been calculated as a function of the inistantion perimeters P and q. Then, the measured quadrupole splittings are used to determine the permuters P and q for both ¹⁰¹En and ¹⁰²En. The values of the calculated parameters are listed in Table 1. In comparison of the parameters are listed in Table 1. In comparison of the parameters are listed in Table 1. In comparison of the parameters are listed in Table 1. In comparison of the parameters are listed in Table 1. In comparison of the parameters of Bu in LaP, obtained in this work with the parameters of Bu in table hours, the P value is promotion of Bu in table both integral. This indicates that the ¹⁵³En and ¹⁵⁵En increases in the lattice of LaP₃ have large second order hyperface interactions which cancel a large part of the quidenpole splitting in the ground state ${}^{7}\text{P}_{0}$.

The smaller P for ⁵⁴Eu³⁺ measures the smaller quadrupole moment. The rade of the quadruple peresponse, P for the two insteams is equal to

This compares the risks of pure quark-spic measures of the are isotopes which has been previously measured by reached groups. The energy value of $Q^{(p)}Q^{(n)}$ is between 2.55 and 2.58[1-4]. The difference between the risks of Q and P is due to the courdination of the pseudoquadropole moment to P. For this mease, the pseudoquadropole moment to P. For this mease, the pseudoquadropole moment of the importance of the pseudoquadropole tilect in various trywalling structures.

The asymmetry parameter η for both ¹⁵¹Ea and ¹⁵⁵Eo in LaF, are submanifoly larger due that of the previolatly studied systems. For Eo⁵⁺:YAIO, [3,4], En⁵⁺:LIYF, [3] and Eu³⁺CaF₂ [6] the parameter η has a value irre than 0.05 for both ¹¹⁵En and ¹²⁶En isotopes in the ground state T₀. This is consistent with the decay of quadrupole interaction. For the one-sized pWT of the quadrupole interaction, in both the lattice and the electric contribution, one has [7]

$$q = \theta^{\mu\rho} B_{\mu} B_{\mu}$$
 (3)

where $B_{22} = 0.4 B_{22}$ are the rank 2 crystal field parameters. This simply colution implies that the parameter η is capacited in to exer for high symmetry crystal structure in which the crystal-field courts planeters of B_{22} are strep. A studie that of η obtained for $E\eta^{2+}$ to higher symmetry best suggers that there is local attachme distortion corrounding the Eu³⁺ time. In Ref. [7], ODNQR studies of Eu³⁺ were cattled out on a number of defact dues in itself of the invited D_{24} alte. As a result, the parameter η for various defact dues varies from 0 in 0.95. This is a good example of the detailed structure information obtained by high resolution ODSIGN. An Eu³⁺ ine in LaF, has a C₂ alte symmetry. Therefore, nonzero η is expected. Using the asynth field parameters of B_{24} and B_{20} for \ln^{2+} : LaF, obtained by Canacit et al. From analysis of optical spectra [9], we have $\eta = 0.56$ is enormalised with 0.576 for ¹⁰⁵Ba and 0.49 for ¹⁵⁵Eu from the present ODNQR work

In summary, we have studied the ground state quadmuch splitting of En'+ LaF, by ODNOR. The measurgeout of man-field quadrupole seeny levels anabled an to determine the instruction personnegs of an elfacthe Handlitzaka. Is carperisen with Bu³⁺ is other system mariled providently, the ""Eu"+ and ""Bo"+ in LaP, have stuck smaller quadrupole galisting in the ground state 'F. This implies that the countballes from mystal-field anti-shielding mancels a large Part of the contribution into the 4 electrons [2]. The approteatry patienties of determined with ODNOR charscienters the someonic crystalline properties and is in peneral agreement with arystal field analysis. A more detailed analysis of the mandrapole interaction and nuclear Zeeman tilters in both the ground state $T_{\rm s}$ and the success state ²D₀ will be published subsequently.

A channel playments

Work performed astler the ampions of the DS Department of Energy, voder commute number W-31-109-ENG-38. One of an (GKL) thunks B.L. Cont and B.M. Martmines for helpful distances.

25 mage

- [1] M.J. Jähen, Proc. Phys. Soc. London 2nd, 2, 77 (1997) 115.
- [2] J. Mid. and D.L. Bohidy, Phys. Rev. 343 (1982) 576.
- [9] B.M. Shuby and B.M. Shudisham, Phys. Rev. Lett. 67 (1991) 1022.
- 10 L.E. Hittens and I.A. Blance, Phys. Rev. 5, 24 (1981) 360,
- [9] K.Y. Shana and L.B. Rabberg, J. Phys. C 18 (1998) 696.
- [4] AJ. Dimonth. AA. Latinit 50 R.B. Means, Phys. Rev. A, 54 (1985) 755.
- [7] R.L. Caves, R.T. Hardery and M.J.M. Leases, J. Phys. 2, 37 (1998) 3161; Y. Hen. Phys. Theor. Manager Math. (heimpitty, 1993.
- [6] L.B. Editioni, Opt. Granece. 21 (1977) 147; Phys. Rev. 3, 16 (1977) 428.
- [9] W.T. Donast, G.L. Goodana, Z. Kajmak and R.R. Elson, J. Chem. Phys. 99 (1985) 3465.