Journal of Luminescence 128 (2008) 1937-1941

Contents lists available at ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

Spectral-kinetic characteristics of Pr^{3+} luminescence in LiLuF₄ host upon excitation in the UV–VUV range

G. Stryganyuk ^{a,b,*}, G. Zimmerer ^{a,c}, N. Shiran ^d, V. Voronova ^d, V. Nesterkina ^d, A. Gektin ^d, K. Shimamura ^e, E. Villora ^e, F. Jing ^e, T. Shalapska ^b, A. Voloshinovskii ^b

^a HASYLAB at DESY, Notkestr. 85, 22607 Hamburg, Germany

^b Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv, Ukraine

^c Institute of Experimental Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

^d Institute for Scintillation Materials, 60 Lenin Avenue, 61001 Kharkov, Ukraine

e Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

ARTICLE INFO

Article history: Received 7 February 2008 Received in revised form 14 April 2008 Accepted 3 June 2008 Available online 7 June 2008

PACS:

78.55.Hx

Keywords: Pr³⁺ luminescence Cross-relaxation Luminescence decay kinetics LiLuF₄

1. Introduction

ABSTRACT

Spectral-kinetic study of Pr^{3+} luminescence has been performed for LiLuF₄:Pr(0.1 mol%) single crystal upon the excitation within 5–12 eV range at T = 8 K. The fine-structure of Pr^{3+} 4f $^2 \rightarrow$ 4f 5d excitation spectra is shown for LiLuF₄:Pr(0.1 mol%) to be affected by the efficient absorption transitions of Pr^{3+} ions into 4f 5d involving 4f ¹ core in the ground state. Favourable conditions have been revealed in LiLuF₄:Pr(0.1 mol%) for the transformation of UV–VUV excitation quanta into the visible range. Lightly doped LiLuF₄:Pr crystals are considered as the promising luminescent materials possessing the efficient $Pr^{3+} 3P_0$ visible emission upon UV–VUV excitation. The mechanism of energy transfer between Lu³⁺ host ion and Pr^{3+} impurity is discussed.

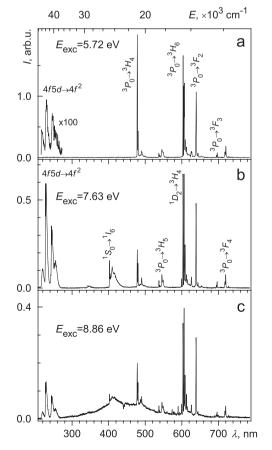
© 2008 Elsevier B.V. All rights reserved.

The luminescent characteristics of Pr^{3+} doped fluorides show rather attractive prospects in lighting applications [1–4], development of fast scintillators [5] and tuneable UV–VUV laser sources [6]. Single crystals of LiYF₄ and LiLuF₄ have been extensively studied as the wide band-gap hosts for trivalent rare earth (RE^{3+}) ions. These crystals have a tetragonal structure with C_{4h}^6 space group and provide the single site of S₄ symmetry for RE^{3+} ion at Y³⁺ or Lu³⁺ sites [7,8]. The intraconfigurational Pr³⁺ 4f² transitions have thoroughly been studied for LiYF₄:Pr³⁺ [9], whereas the simulation of Pr³⁺ 4f

The intraconfigurational Pr^{3+} 4f² transitions have thoroughly been studied for LiYF₄:Pr³⁺ [9], whereas the simulation of Pr³⁺ 4f 5d states fails to reproduce accurately the experimental data and the origin of structure in Pr³⁺ 4f² \rightarrow 4f 5d excitation spectra is not quite clear up to now. This difficulty is common in study of 4f^N \rightarrow 4f ^{N-1} 5d transitions for all RE³⁺ ions since the extended 5d orbits undergo the electron–phonon interaction causing the vibronic bands that complicates the spectra analysis. However, the recent calculations for $4f^N \rightarrow 4f^{N-1}$ 5d transitions of RE^{3+} ions in LiYF₄ [10–13] show rather good agreement with experimental results. Present paper reports on the time-resolved high-resolution (3.2–0.6 Å) study of Pr^{3+} luminescence in LiLuF₄:Pr(0.1 mol%) single crystal upon the excitation within 5–12 eV range at T = 8 K.

2. Experiment details

Scheelite LiLuF₄:Pr single crystal was grown from platinum crucible using Czochralski technique with the growth conditions modified according to the previous investigations [14]. Resistive high-purity graphite heater was used. The starting charge was prepared from commercial LiF, LuF₃ and PrF₃ powders of high purity (>99.99%). The concentration of Pr³⁺ in the starting charge was adjusted to 1 mol%. The growth system was preheated at 700 °C and pumped down to 10^{-5} mbar for 12 h to eliminate water and oxygen from the growth chamber and starting charge. Thereafter, the growth chamber was slowly filled with a pure (99.9999%) CF₄ gas and the charge was melted at approximately 820 °C. LiLuF₄:Pr(0.1 mol%) sample of 10 × 10 × 1 mm³ size was cut from the central part of the grown bulk in (001) plain


^{*} Corresponding author. SRC Carat, Institute for Materials, 202 Stryjska Str., 79031 Lviv, Ukraine. Tel.: +38 032 294 9731.

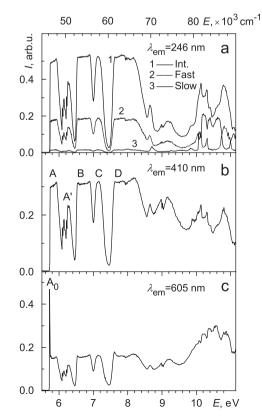
E-mail address: stryganyuk@gmail.com (G. Stryganyuk).

^{0022-2313/\$ -} see front matter \circledcirc 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jlumin.2008.06.003

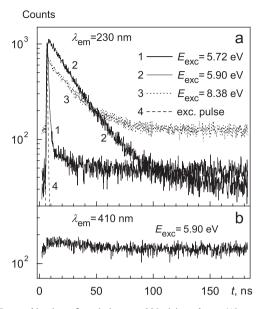
perpendicular to *c*-axis. Chemical composition was determined by the inductively coupled plasma method.

Measurements of luminescence excitation and emission spectra as well as luminescence decay kinetics were performed at Deutsches Elektronen Synchotron (DESY, Hamburg) using the synchrotron radiation from DORIS III storage ring and facility of SUPERLUMI experiment at HASYLAB [15]. Helium flow-type cryostat has been used to stabilize the temperature at T = 8 K. Time-integrated emission spectra were measured with the spectral resolution of about 0.3 nm using 0.3 m ARC "Spectra Pro 308" monochromator-spectrograph in Czerny-Turner mounting equipped with 300, 1200 groves/mm gratings and Princeton Instruments CCD detector (1100×300 pixels). The emission spectra were not corrected for the spectral sensitivity of the detection system, i.e., the real relative intensity can differ from that in presented emission spectra. Time-resolved luminescence excitation spectra were scanned with the resolution of 3.2–0.6 Å within 5–12 eV range by the primary 2 m monochromator in 15° McPherson mounting (equipped with Jobin Yvon holographic concave grating, Al+MgF₂ coating, 1200 groves/mm) using HAMAMATSU R6358P photomultiplier at the secondary ARC monochromator. Spectra of the fast emission component were registered after the excitation pulse within 2-8 ns time-gate, slow component-within 120-190 ns one. Time-integrated spectra correspond to the total signal from the photomultiplier. The primary monochromator was calibrated with ± 0.05 Å accuracy using ${}^{1}S_{0} \rightarrow {}^{3}P_{i}$ absorption of atomic xenon and krypton gases as a reference in 115–147 nm range. Luminescence excitation spectra have been corrected on the incident photon flux. Luminescence decay kinetics was registered within 200 ns time gate defined by the excitation pulse repetition upon the storage ring operation in

Fig. 1. Time-integrated emission spectra of LiLuF₄:Pr(0.1 mol%) single crystal measured upon different excitation energies at T = 8 K.


five bunch mode. Microcal Origin software has been used to determine the decay-time constant for the main decay component assuming its exponential profile.

3. Experimental results and discussion


The emission spectra of LiLuF₄:Pr(0.1 mol%) crystal measured upon the different excitation energies at T = 8 K within 200–800 nm range are presented in Fig. 1. Emission in four structured bands within 216–266 nm range (Fig. 1) reveals the excitation threshold at 5.73 eV (Fig. 2(a)) and the dominant fast component (Fig. 2(a), curve 2) with 22 ns decay–time constant (Fig. 3, curve 2) upon the excitation up to 8.3 eV. Such spectralkinetic characteristics prove 216–266 nm emission to originate mainly from the dipole-allowed 4f 5d \rightarrow 4f² radiative transitions of impurity Pr³⁺ ions in LiLuF₄ host [16]. Fine structure of Pr³⁺ 4f 5d \rightarrow 4f² emission spectrum (Fig. 4) reproduces well the detailed diagram of low-lying energy levels of Pr³⁺ in LiLuF₄ host [8–17]. The excitation bands (A, B, C and D) within 5.73–8.3 eV (Fig. 2) correspond to the interconfigurational 4f² \rightarrow 4f 5d transitions of Pr³⁺ ion [12].

Observation of fast Pr^{3+} 4f 5d \rightarrow 4f ² luminescence implies the absence of energy gap between Pr^{3+} 1S₀ level and 4f 5d band [1]. However, 410 nm emission shows the same excitation features as 4f 5d \rightarrow 4f ² luminescence in 5.73–8.5 eV range (Fig. 2(b)) but possesses relatively slow (about 1 μ s) decay component (Fig. 3(b)) that is characteristic for Pr^{3+} 1S₀ \rightarrow ¹I₆ transitions [4]. Thus, the emission around 410 nm may originate from both 4f 5d and ¹S₀ states of Pr^{3+} , whereas the contribution of 4f 5d \rightarrow 4f ² radiative transitions prevails within 216–266 nm range.

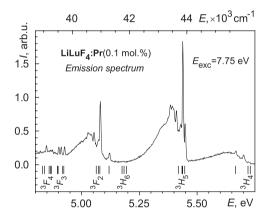
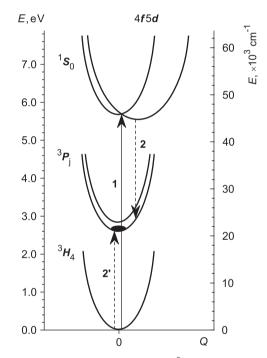

Excitation spectra of the emission originating from $Pr^{3+3}P_0$ show the distinct excitation maximum A_0 at 5.72 eV (Fig. 2(c))

Fig. 2. Time-resolved (a) and time-integrated (b, c) excitation spectra of LiLuF₄:Pr(0.1 mol%) luminescence measured at T = 8 K with the resolution interval of 3.2 Å.

Fig. 3. Decay kinetics of emission at 230 (a) and at 410 nm (b) from LiLuF₄:Pr(0.1 mol%) single crystal. T = 8 K. Excitation pulse (120 ps) is reproduced by the registration system as the decay profile with 0.4 ns time constant (dashed


Fig. 4. Time-integrated emission spectrum of LiLuF₄:Pr(0.1 mol%) single crystal upon 7.75 eV excitation at T = 8 K. The diagram of low-lying energy levels of Pr³⁺ in LiLuF₄ host [8–17] is presented below.

Which is not observed for 4f 5d \rightarrow 4f² and ¹S₀ emission (Figs. 2(a) and (b)). Upon the excitation at 5.72 eV, Pr³⁺ ³P₀ emission dominates (Fig. 1(a)) and shows the intensity higher than upon other excitation probed (Fig. 2(c)). On the contrary, the emission intensity in 4f 5d \rightarrow 4f² bands is extremely low (Fig. 1(a)) and respective decay kinetics (Fig. 3(a), curve 1) shows a very fast component (with 1.3 ns time constant) upon 5.72 eV excitation. One may conclude the nonradiative relaxation of Pr³⁺ 4f 5d states upon the excitation at 5.72 eV.

Fig. 5 shows the detailed spectral features of 4f 5d \rightarrow 4f² and ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ luminescence within 5.63–5.77 eV range. The overlap of 4f 5d \rightarrow 4f² emission spectrum with the excitation spectrum of ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ luminescence shows up within 5.72–5.73 eV range where the zero-phonon 4f 5d \leftrightarrow 4f² transitions are expected. The intensity of zero-phonon line (ZPL) in the emission spectrum (curve 1) may be reduced due to the reabsorption. Maxima of ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ luminescence excitation (curve 2, around 5.72 and 5.73 eV) appear to be well matched with two lowest Stark levels of Pr³⁺ {}^{3}H_{4} state (vertical ticks in Fig. 5) positioned for their best fit with emission maxima (see Fig. 4). However, it is rather strange to have a higher intensity from the second Stark component (tick at

Fig. 5. Emission spectrum of LiLuF₄:Pr(0.1 mol%) single crystal upon 7.75 eV excitation (circled curve 1) presented together with the excitation spectra of 480 nm (solid curve 2) and 246 nm (dotted curve 3) emission at T = 8 K. The Stark components of Pr³⁺ ³H₄ in LiLuF₄ host [8–17] are shown with the vertical ticks. Resolution interval is presented for the excitation spectra (vertical slit mark).

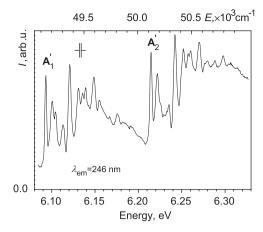
Fig. 6. Configurational coordinate diagram for Pr^{3+} elucidating the hypothetical cross-relaxation processes (transitions 2, 2') in LiLuF₄:Pr(0.1 mol%) single crystal after 4f² \rightarrow 4f 5d excitation (transitions 1) at *T* = 8 K.

5.72 eV) which has the population probability of a few orders lower than one of the lowest $Pr^{3+3}H_4$ level (tick at 5.73 eV).

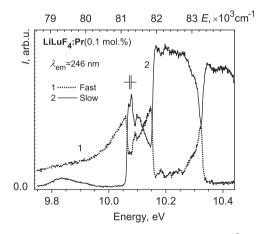
Fig. 6 shows the hypothetical mechanism of ${}^{3}P_{0}$ population upon the excitation of Pr^{3+} into the lowest 4f 5d states $(E_{exc} = 5.73 \text{ eV}, \text{ transition 1})$. The broadening and slow decay kinetics of 410 nm emission band allow us to relate its origin with both ${}^{1}S_{0}$ and 4f 5d states implying their relative location presented in a configurational coordinate diagram (Fig. 6). The energy positions of $Pr^{3+} {}^{3}H_{4}, {}^{3}P_{j}, {}^{1}S_{0}$ levels and lowest 4f 5d state have been adjusted according to the literature data [8–17] and spectral characteristics of LiLuF₄:Pr(0.1 mol%) emission presented in this work. The suggested location of lowest 4f 5d state and ${}^{3}P_{j}$ levels of Pr^{3+} in LiLuF₄:Pr(0.1 mol%) allows the cross-relaxation (Fig. 6, transitions 2, 2') between neighbour Pr^{3+} ions:

$$4f \ 5d + {}^{3}H_{4} \to {}^{3}P_{0} + {}^{3}P_{0} \tag{1}$$

In a very narrow 5.72–5.73 eV energy range, the interconfigurational Pr^{3+} 4f $^2 \rightarrow$ 4f 5d absorption is still low (Fig. 5, curve 3) and the large penetration depth of excitation quanta provides the efficient excitation of Pr^{3+} ion in the volume of LiLuF₄: Pr(0.1 mol%) crystal. Thus, excitation of LiLuF₄:Pr(0.1 mol%) into the lowest Pr^{3+} 4f 5d states leads to (i) the efficient excitation of Pr^{3+} impurity due to the deep penetration of excitation quanta, (ii) subsequent decay of Pr^{3+} 4f 5d states via the cross-relaxation (1) followed by (iii) emitting of visible quanta by pairs of neighbour Pr^{3+} ions.


The similar processes of UV–VUV photon cutting may occur upon the excitation into the higher Pr^{3+} 4f 5d states, but their luminescent output (Pr^{3+} $^{3}P_{0}$ emission) comes to be considerably lower because of the reduced number of Pr^{3+} pair in the excited crystal volume due to the small penetration of the excitation quanta in the range of efficient 4f 2 →4f 5d absorption. The efficiency of Pr^{3+} $^{3}P_{0}$ emission is affected already at 5.73 eV (Fig. 5, curve 2) by the decrease of penetration depth due to the intensification of 4f 2 →4f 5d absorption (Fig. 5, curve 3) and the height of excitation maximum at 5.72 eV originating from the second Stark component of $^{3}H_{4}$ state exceeds that of one at 5.73 eV originating from the lowest $^{3}H_{4}$ level. Splitting of about 2–3 meV revealed for the main maxima of 4f 5d absorption within 5.72–5.74 eV (Fig. 5, curve 2) has most probably a phonon-related origin.

One may expect the excitation efficiency of $Pr^{3+} {}^{3}P_{0}$ emission to be a few orders higher at 5.73 eV (compare with 5.72 eV one) for a lightly doped LiLuF₄:Pr crystal where the excitation quanta are not absorbed within a thin outer layer but penetrate deep into the crystal. Of course, the decrease of Pr^{3+} content reduces the crossrelaxation processes and the intensity of ${}^{3}P_{0}$ luminescence consequently, but there should be an optimal Pr^{3+} concentration providing the maximal efficiency of $Pr^{3+} {}^{3}P_{0}$ emission due to UV photon cutting (1).


Four bands (A, B, C and D) of $Pr^{3+} 4f^2 \rightarrow 4f 5d$ absorption (Fig. 2) prevail in the excitation spectra of emission from $Pr^{3+} 4f 5d$ and $^{1}S_{0}$ (frames a, b). These bands show up also in the excitation spectra of $Pr^{3+} ^{3}P_{0}$ emission (Fig. 2(c)) but with the intensity lower than one in A_{0} maxima (5.72–5.73 eV). The saturation effect is pronounced for $Pr^{3+} 4f^2 \rightarrow 4f$ 5d excitation in LiLuF₄:Pr(0.1 mol%) as a confined luminescence efficiency in A, B, C and D bands due to the absorption of excitation quanta within a thin outer layer of the crystal where the nonradiative decay of $Pr^{3+} 4f5d$ states appears because of their interaction with the surface defects.

Upon the excitation above 8.3 eV, $Pr^{3+} {}^{3}P_{0}$ emission reveals relatively higher intensity (Fig. 2(c)) compare to the case of emission from Pr^{3+} 4f 5d and ${}^{1}S_{0}$ states (Figs. 2(a, b)). This may be explained by the higher efficiency of $Pr^{3+} {}^{3}P_{0}$ population via the energy transfer from excitonic states or recombination of Pr^{3+} with electron–hole pairs [18,19]. A broad band within 300–550 nm arises in the emission spectrum of LiLuF₄:Pr(0.1 mol%) upon the excitation at 8.86 eV (Fig. 1(c)). This band has most likely the intrinsic origin and corresponds to the excitonic emission of LiLuF₄ host.

Fine structure in A' band (6.08–6.43 eV) is revealed for all measured excitation spectra of Pr^{3+} emission (Fig. 2). Fine structure in 4f $^{N} \rightarrow$ 4f $^{N-1}$ 5d excitation spectra of RE^{3+} ions has been assigned to the excited 4f $^{N-1}$ 5d states involving 5d electron in the lowest crystal-field level and 4f $^{N-1}$ core in an excited state [20]. Fig. 7 presents a detailed structure in A' excitation band revealed for Pr^{3+} emission in LiLuF₄:Pr(0.1 mol%). A' band shows a clearly resolved doublet of excitation peak series with the first maxima at 6.093 eV (A'_1) and 6.215 eV (A'_2). These two A' series originate most likely from different 5d electron states. The energy distance of 0.36 eV between A'_1 maximum (6.215 eV) and the lowest Pr^{3+} 4f 5d state (5.730 eV) is different from the known

Fig. 7. High-resolution excitation spectra of Pr^{3+} 4f $5d \rightarrow 4f^{-2}$ emission from LiLuF₄:Pr(0.1 mol%) single crystal measured within the range of Pr^{3+} 4f $^{2} \rightarrow 4f$ 5d absorption at T = 8 K. The resolution interval is presented by the vertical slit mark.

Fig. 8. High-resolution time-resolved excitation spectra of Pr^{3*} 4f 5d \rightarrow 4f² emission from LiLuF₄:Pr(0.1 mol%) single crystal measured within the range of Lu^{3*} 4f ¹⁴ \rightarrow 4f ¹³5d absorption at *T* = 8 K.

splitting of 4f¹ core (about 0.25 eV) because of f–d interaction in the excited 4f 5d state [12].

The decay kinetics of Pr^{3+} 4f 5d \rightarrow 4f 2 emission shows the rise of slow component (\sim 100 µs time constant) upon the excitation above 8.3 eV (Fig. 3(a), curve 3). The competition between the fast and slow mechanisms of Pr³⁺ excitation is clearly observed in the excitation spectra of Pr^{3+} 4f 5d \rightarrow 4f 2 emission above 10 eV (Fig. 2(a), curves 2, 3). Fig. 8 presents the high-resolution excitation spectra for the fast (curve 1) and slow (curve 2) components of 4f 5d \rightarrow 4f ² emission ($\lambda_{em} = 246$ nm). Excitation spectrum of slow emission component reproduces the absorption of Lu³⁺ host ions due to the spin-forbidden (10.06 eV threshold) and spin-allowed (10.15 eV threshold) Lu^{3+} 4f $^{14} \rightarrow$ 4f 13 5d transitions [13]. $Lu^{3+} 4f^{13} 5d \rightarrow 4f^{14}$ emission (9.85–10.05 eV) is known to be due to the spin-forbidden radiative transition at T = 8 K and has a characteristic slow decay kinetics. Thus, the energy transfer between Lu^{3+} and Pr^{3+} occurs via the reabsorption of Lu^{3+} 4f 13 5d \rightarrow 4f 14 emission by Pr^{3+} ions giving rise to the slow component of Pr^{3+} 4f 5d \rightarrow 4f ² luminescence.

4. Conclusions

Spectral-kinetic study of Pr^{3+} luminescence in LiLuF₄:Pr(0.1-mol%) single crystals at T = 8 K has shown the emission around 410 nm to originate from both 4f 5d and ${}^{1}S_{0}$ states of Pr^{3+} and the

main contribution of radiative Pr^{3+} 4f 5d \rightarrow 4f 2 transitions into the emission within 216–266 nm range.

In the case of studied LiLuF₄:Pr(0.1 mol%) single crystal, the fine structure of Pr^{3+} 4f $^2 \rightarrow$ 4f 5d excitation spectra is affected at T = 8 K by the efficient absorption transitions of Pr³⁺ into 4f 5d involving 4f⁻¹ core in the ground state. LiLuF₄:Pr(0.1 mol%) possesses a favourable conditions for the transformation of excitation UV-VUV quanta into the visible range via the crossrelaxation processes involving neighbour Pr³⁺ ions. The relaxation of excited Pr³⁺ ions within the lowest well-defined 4f 5d states occurs in LiLuF₄:Pr(0.1 mol%) via the cross-relaxation resulting in the population of $Pr^{3+} P_0$ states. Excitation of Pr^{3+} ion into the lowest 4f 5d state leads to (i) the efficient excitation of the Pr³⁺ impurity due to the deep penetration of excitation quanta, (ii) subsequent decay of Pr^{3+} 4f 5d states via the cross-relaxation $(4f 5d+{}^{3}H_{4} \rightarrow {}^{3}P_{0}+{}^{3}P_{0})$ followed by (iii) emitting of visible quanta by pairs of neighbour Pr³⁺ ions. The efficiency of such crossconversion depends on the concentration of Pr³⁺ impurity, and may be affected by the reduced penetration of excitation guanta due to the efficient $Pr^{3+} 4f^2 \rightarrow 4f 5d$ absorption in the outer layer of the crystal with a high content of Pr^{3+} . Lightly doped LiLuF₄:Pr crystal with optimal Pr³⁺ concentration may be considered as a promising luminescent material (with quantum yield greater than 1) possessing the efficient $Pr^{3+3}P_0$ visible emission upon UV-VUV photon absorption. However, the tentative study of LiLuF4:Pr luminescence at room temperature is still desirable.

The energy transfer between Lu³⁺ host ion and Pr³⁺ impurity occurs in LiLuF₄:Pr(0.1 mol%) via the reabsorption of Lu³⁺ 4f ¹³5d \rightarrow 4f ¹⁴ emission by Pr³⁺ ions giving rise to the slow component of Pr³⁺ 4f 5d \rightarrow 4f ² emission upon the excitation above 10 eV.

Acknowledgements

The valuable comments of Prof. Andries Meijerink (Utrecht University, the Netherlands) are gratefully acknowledged. Authors also appreciate the support of Superlumi experiment by HASYLAB (DESY, Hamburg).

References

- [1] W.W. Piper, J.A. DeLuca, F.S. Ham, J. Lumin. 8 (1974) 344.
- [2] R.T. Weg, H. Donker, K.D. Oskam, A. Meijerink, Science 283 (1999) 664.
- [3] E. van der Kolk, P. Dorenbos, C.W.E. van Eijk, et al., J. Lumin. 97 (2002) 212.
- [4] S. Kuck, I. Sokolska, M. Henke, T. Scheffler, E. Osiac, Phys. Rev. B 71 (2005) 165112
- [5] W. Drozdowski, A.J. Wojtowicz, J. Alloys Compds. 300–301 (2000) 261.
- [6] S. Nicolas, E. Descroix, M.-F. Joubert, et al., Opt. Mater. 22 (2003) 139.
- [7] E. Garcia, R.R. Ryan, Acta Cryst. C 49 (1993) 2053.
- [8] A.A. Kaminskii, Phys. Status Solidi A 97 (1986) K53.
- [9] L. Esterowitz, F.J. Bartoli, R.E. Allen, et al., Phys. Rev. B 19 (1979) 6442.
- [10] M. Laroche, J.-L. Doualan, S. Girard, et al., J. Opt. Soc. Amer. B 17 (2000) 1291.
- [11] M.F. Reid, L. van Pieterson, R.T. Weg, A. Meijerink, Phys. Rev. B 62 (2000) 14744.
- [12] L. van Pieterson, et al., Phys. Rev. B 65 (2002) 45113.
- [13] M. Kirm, G. Stryganyuk, S. Vielhauer, G. Zimmerer, V.N. Makhov, B.Z. Malkin, O.V. Solovyev, R. Yu Abdulsabirov, S. Lkorableva, Phys. Rev. B 75 (2007) 075111.
- [14] K. Shimamura, H. Sato, A. Bensalah, et al., Cryst. Res. Technol. 36 (2001) 801.
- [15] G. Zimmerer, Radiat. Meas. 42 (2007) 859.[16] E. Sarantopoulou, A.C. Cefalas, M.A. Dubinskii, et al., Opt. Lett. 19 (1994)
- 499.
- [17] S. Nicolas, E. Descroix, Y. Guyot, M.-F. Joubert, et al., Opt. Mater. 16 (2001) 233.
- [18] P.A. Rodnyi, P. Dorenbos, G.B. Stryganyuk, et al., J. Phys. Condens. Matter 15 (2003) 719.
- [19] A.P. Vink, P. Dorenbos, CWE. van Eijk, J. Solid State Chem. 171 (2003) 308.
- [20] L. van Pieterson, M.F. Reid, A. Meijerink, Phys. Rev. Lett 88 (2002) 67405.