
Signal Processing 173 (2020) 107588 

Contents lists available at ScienceDirect 

Signal Processing 

journal homepage: www.elsevier.com/locate/sigpro 

Joint user association and power allocation for massive MIMO HetNets 

with imperfect CSI 

Hao Li a , b , Zhigang Wang 

a , ∗, Houjun Wang 

a 

a School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 
b North Automatic Control Technology Institute, China North Industries Group Corporation, Taiyuan 030 0 06, China 

a r t i c l e i n f o 

Article history: 

Received 15 March 2019 

Revised 24 December 2019 

Accepted 16 March 2020 

Available online 19 March 2020 

Keywords: 

Massive MIMO 

HetNets 

User association 

Power allocation 

Imperfect CSI 

a b s t r a c t 

Since Massive multiple-input and multiple-output (MIMO) and heterogeneous networks (HetNets) have 

significantly improvement in spectrum efficiency, Massive MIMO enabled HetNets have emerged as a 

promising technique for the fifth-generation cellular networks. Most previous studies focus on energy- 

efficient resource allocation of Massive MIMO HetNets by assuming perfect channel state information 

(CSI). In this paper, we investigate the α-fairness network utility optimization problem of joint user asso- 

ciation and power allocation for a downlink Massive MIMO HetNet with imperfect CSI. By utilizing zero- 

forcing beamforming, we show a new closed-form lower bound expression on the ergodic achievable 

rate. Furthermore, we formulate the optimization problem as a mixed-integer nonlinear programming 

problem, which is non-convex and NP-hard, to achieve the maximization of α-fairness network utility. 

Consequently, a joint iterative algorithm with respect to user association and power allocation is devel- 

oped by decomposing the original problem and relaxing the constraints. Simulation results show that our 

proposed algorithm can yield much better network utility performance than the other algorithms. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Due to the explosive growth in wireless data requirement and

he number of wireless terminals, the fifth-generation (5G) cellu-

ar networks have gained substantial attention [31] . Also, 5G cellu-

ar networks are expected to improve spectrum efficiency and sys-

em capacity. Massive multiple-input and multiple-output (MIMO)

nd dense heterogeneous networks (HetNets) are considered as the

andidate technology for the future 5G cellular networks, which

an significantly enhance the spectrum efficiency [1–4] . By serving

ultiple users, Massive MIMO technology, where the base station

BS) is employing a large number of antennas, can achieve enor-

ous improvement for spectrum efficiency. Meanwhile, in a Het-

et, the small cells are deployed within a macrocell coverage, and

he small cells can offload data traffic [4] ; therefore, HetNets, com-

rised of massive MIMO base stations with different powers, num-

ers of antennas and multiplexing gain capabilities, will increase

he system spectrum efficiency. One of the indispensable character-

stic of HetNet is that a cell edge user can potentially be associated

ith either the macrocell BS or a small cell BS, resulting in dif-

erent performance. Therefore, it is important to establish mecha-
∗ Corresponding author. 
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isms for associating users to BSs in the dense HetNets, so that the

vailable wireless infrastructure can be efficiently used. Since both

assive MIMO and HetNets simultaneously have superior perfor-

ance benefits, studying Massive MIMO enabled HetNets has been

onsidered as a key issue. 

.1. Related works and motivations 

Recently, some existing papers have investigated the resource

llocation problem of Massive MIMO systems [5–8] . For example,

he authors in [5] focused on the energy efficiency optimization

roblem for a downlink single-cell Massive MIMO system under

erfect channel state information (CSI), and a joint antenna selec-

ion and power allocation iterative algorithm was developed. In [6] ,

he authors jointly optimized the power allocation and user as-

ociation in multi-cell Massive MIMO downlink systems with im-

erfect CSI, and their goal was to minimize the transmit power

onsumption while maintaining the quality-of-service (QoS) con-

traints. In order to find appropriate QoS targets, [6] formulated a

ax-min fairness problem that maximizes the worst spectral effi-

iency among the users. However, they neglected the backhaul ca-

acity constraint and the load constraint. Additionally, they do not

tudied the proportional fairness problem among the users. Vari-

us energy-efficient resource allocation in HetNets have been re-

orted in [9–11] . The authors in [9] designed a user association

https://doi.org/10.1016/j.sigpro.2020.107588
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algorithm with lower-complexity to maximize the logarithmic util-

ity. The authors of [10] proposed an iterative joint user associa-

tion and power allocation algorithm to maximize the energy effi-

ciency of HetNets. To maximize sum logarithmic user rate, a joint

optimization scheme of cell association and bandwidth allocation

in HetNets was studied in [11] . However, the above works investi-

gated the resource allocation in HetNets by assuming perfect CSI. 

A Massive MIMO enabled HetNet is potentially capable of im-

proving the system capacity, compared to Massive MIMO systems

or HetNets. Related works on energy-efficient resource allocation

schemes in Massive MIMO enabled HetNets are briefly given be-

low. In [12] , the authors proposed an energy-efficient user associa-

tion algorithm to maximize the network logarithmic utility in Mas-

sive MIMO enabled HetNets. To study the tradeoff between energy

efficiency and spectral efficiency with proportional rate fairness, a

joint user association and power coordination optimization prob-

lem was considered in [13] for Massive MIMO enabled HetNets.

The authors in [14] constructed a nonconvex integer programming

problem in Massive MIMO enabled HetNets, and developed a joint

user association and resource allocation algorithm. However, the

main distinction is that these aforementioned Massive MIMO Het-

Nets contributions considered the case that all BSs and/or users

know the perfect CSI, while in this paper we assume that all BSs

and users simultaneously have imperfect CSI knowledge. By con-

sidering the case of imperfect CSI, the authors in [15] derived a

closed-form expression for the spectral efficiency and designed a

joint scheme of user association and power allocation with pro-

portional fairness in Massive MIMO HetNets. Different from the

previous works which considered the proportional fairness and/or

the max-min fairness separately, the motivation of this paper is

to study a general solution of α-fairness optimization problem un-

der imperfect CSI. 1 Note that, in this paper, α-fairness problem in-

cludes the proportional fairness and the max-min fairness. 

1.2. Contributions 

To achieve the maximization of α-fairness network utility, we

focus on the joint optimization problem of user association and

power allocation in a two-tier downlink Massive MIMO HetNet

with imperfect CSI. To the best of the authors’ knowledge, this

problem has not been studied in the existing literature. The main

contributions of the paper are summarized as follows. 

• We construct the two-tier downlink model of a Massive

MIMO HetNet by assuming imperfect CSI of BSs and users.

Using linear zero-forcing (ZF) beamforming, a new closed-

form lower bound expression for the ergodic achievable rate

is derived. 
• We formulate a joint optimization problem of user asso-

ciation and power allocation to maximize the α-fairness

network utility, under QoS requirements, backhaul capacity

and load constraints. This problem is a non-convex mixed-

integer nonlinear programming (MINLP) problem. 
• We decompose the original non-convex problem into user

association subproblem and power allocation subprob-

lem, and develop a joint iterative sub-optimal algorithm.

Specifically, based on Lagrangian dual decomposition (LDD)

method, the optimal user association solution can be ob-

tained; with a given user association, a gradient ascent

method is used to find the solution of power allocation. 
• We demonstrate the correctness of the derived closed-form

expression, and the effectiveness of our proposed algorithm
1 Fairness is an important consideration when designing wireless communica- 

tion systems to provide uniformly great service for everyone. Furthermore, Fairness 

problem can also be applied the cooperative multiantenna relaying systems [16,17] . 

n

n

by extensive experiments. Numerical results provide some

insights into the effect of the number of transmit antennas

at MBS on the network utility, and show that the proposed

algorithm achieves better network utility performance than

the existing schemes. 

.3. Paper organization 

The rest of this paper is organized as follows. In Section 2 , we

onstruct the downlink system model of a Massive MIMO Het-

et and formulate an optimization problem. Section 3 presents the

oint algorithm design. Simulation results are shown in Section 4 .

inally, we draw conclusions in Section 5 . 

.4. Notation 

The following notation is adopted throughout the paper. We

se lowercase and uppercase boldface letters to denote the vectors

nd matrices, respectively. The transpose, the conjugate (Hermi-

ian) transpose and the inverse are denoted by ( ·) T , ( ·) H and (·) −1 ,

espectively. E { ·} is the expectation operation; tr ( ·) is the trace op-

ration; | ·| is the absolute value of a complex-valued scalar; ‖·‖ is
he (Euclidean) vector 2-norm. 

. System model and formulation problem 

.1. System model 

We establish a two-tier downlink HetNet composed of a Mas-

ive MIMO macro BS (MBS) and multiple pico BSs (PBSs). There

re K single-antenna user terminals (UTs) that are uniformly dis-

ributed in this two-tier network. Without loss of generality, we

enote the set of PBSs by B p = { 1 , . . . , J} and the set of all BSs by

 = B p ∪ { 0 } , where the index 0 is introduced to indicate the MBS.

e define M j as the number of transmit antennas at the j th BS.

e denote k ∈ U as the index for each UT, where U = { 1 , . . . , K} is
he set of UTs. 

We assume that the whole system is operating in time-division

uplexing (TDD) mode, this means that the uplink channel gain

nd the downlink channel gain are assumed to be same. Since the

ath loss and shadow fading are slowly varying under a block fad-

ng channel, the large-scale fading coefficients can be estimated

erfectly by the BS [18] . For a given resource block (RB), let

 j (1 ≤ S j ≤ M j ) be the maximum number of downlink data streams

hat BS j can transmit simultaneously. For analytical tractability, we

ssume that each BS can connect to more than one UT and the

aximum number of UTs is S j , while each UT is associated with

ne BS at a time 2 Thus, the received signal of the k th UT associ-

ted with the j th BS can be formulated as 

 j,k = 

√ 

P j 

S j 
g 

H 
j,k a j,k q j,k + 

∑ 

j ′ ∈B\ j 

∑ 

k ′ ∈ S 
j 
′ 

√ 

P j ′ 

S j ′ 
g 

H 
j ′ ,k a j ′ ,k ′ q j ′ ,k ′ + n j,k (1)

here P j is the transmit power from the j th BS, and j = 0 denotes

he transmit power from MBS; g j,k ∈ C 

M j ×1 denotes the downlink

hannel gain between the j th BS and the k th UT; a j,k ∈ C 

M j ×1 de-

otes the precoding beamforming vector; q j,k is the transmitted in-

ormation symbol from BS j to UT k , and it satisfies E {| q j,k | 2 } = 1 ;

he noise term n j,k is a zero-mean complex additive white Gaussian

oise (AWGN) with unit variance. 
2 For simplicity, we assume that each UT is served by one BS through a subchan- 

el with unit bandwidth. 
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Proof. See Appendix A . �

3 Different from [6,25] , we consider total transmit power of each BS as optimiza- 

tion variables, then the transmit power of each BS is equally allocated to all its 

associating UTs. 
In the Massive MIMO HetNets, obtaining the perfect knowledge

f CSI is a challenging for both BSs and UTs. In our work, we in-

estigate the problem of joint user association and power alloca-

ion by assuming that all BSs and UTs have imperfect CSI. In (1) ,

he second term is the interference signal of the k th UT associated

ith the j th BS from remaining k − 1 UTs, and this interference sig-

al increases the difficulty of the desired signal extraction for the

eceiver side. Here, we assume that each user detects its desired

ignal from the received signal of (1) by using the successive in-

erference cancellation technique [19] . However, for any user, the

urrent precoded channel information is unknown in the downlink

ayload data transmission. In this case, we will utilize the knowl-

dge of the channel statistics to approximate the exact precoded

hannel. More precisely, the realistic channel in signal detection

an be treated as the mean of the channel gain, which is the con-

equence of the law of large numbers [20] . Therefore, when all UTs

ave imperfect CSI, we can decompose (1) as [21] 

 j,k = 

√ 

P j 

S j 
E 

{
g 

H 
j,k a j,k 

}
q j,k + 

√ 

P j 

S j 

(
g 

H 
j,k a j,k − E 

{
g 

H 
j,k a j,k 

})
q j,k 

+ 

∑ 

j ′ ∈B\ j 

∑ 

k ′ ∈ S 
j 
′ 

√ 

P j ′ 

S j ′ 
g 

H 
j ′ ,k a j ′ ,k ′ q j ′ ,k ′ + n j,k (2) 

here the first term is the received desired signal over the deter-

inistic average precoded channel from BS j , while the remaining

hree terms can be treated as the system interference in the signal

xtraction. 

.2. Channel model 

As shown in [2] , the channel gain vector can be modeled as

 j,k = 

√ 

β j,k h j,k , where β j,k and h j,k ∈ C 

M j ×1 are the large-scale

ading and small-scale fading between the j th BS to the k th UT,

espectively. Note that β j,k is approximated as a constant; h j,k is

lso known as Rayleigh fading and therefore we know that the

lements of h j,k are independent and identically distributed (i.i.d)

andom variables with zero mean and unit variance. With the as-

umption of the imperfect CSI at BS, the channel gains have to

e estimated. According to [2,6] , we know that a standard way

f channel estimation is to employ uplink pilots. Specifically, all

sers simultaneously transmit τ = K mutually orthogonal pilot se-

uences to the BS in a coherence interval of length T , then the

S exploit these pilots to estimate the uplink channel matrix. This

rocess is recognized as the uplink training phase . Since the sys-

em operates in TDD mode, the uplink channel and the downlink

hannel are assumed to be reciprocal. Based on reciprocity, the BS

an utilize the estimated downlink channel response to achieve the

ownlink data transmission in the remaining coherence interval of

ength T − τ . This process is known as the data transmission phase .

owever, different from [2,6] , we assume the large-scale fading co-

fficient is known and only the small-scale fading channel is es-

imated at the BS. We mainly focus on the effects of estimation

rror on downlink transmission, and therefore we omit the uplink

hannel estimation process. Note that, a similar channel estimation

odel has been shown in [15,22] . Based on the minimum mean

quare error (MMSE) channel estimation error model [23,24] , the

ayleigh fading coefficients can be expressed as 

 j,k = 

ˆ h j,k + e j,k (3) 

here h j,k denotes the actual Rayleigh fading channel vector; ˆ h j,k 

s the estimated channel vector; e j,k is the estimated error vector,

nd its elements follow complex Gaussian distribution with mean

ero and the variance σ 2 
e . Accordingly, we can know that the el-

ments of ˆ h j,k can be distributed as CN (0 , 1 − σ 2 
e ) . With the or-
hogonality property of the MMSE estimation, ˆ h j,k and e j,k are un-

orrelated. Further, we can obtain the estimated downlink channel

atrix of j th BS as ˆ G j = [ ̂ g j, 1 , . . . , ̂  g j,K ] , where the k th column of ˆ G j 

s denoted by ˆ g j,k = 

√ 

β j,k 
ˆ h j,k . Denote ˆ H j as the estimated Rayleigh

ading channel matrix. 

.3. Ergodic achievable rate 

Owing to the superior performance of linear ZF beamform-

ng, we employ the lower-complexity ZF to precode payload data

efore the downlink transmission of each BS, so as to eliminate

he intra-cell interference. With the normalized ZF, we have a j,k =
g 

† 
j,k √ 

E {‖ g † 
j,k 

‖ 2 } 
, where g 

† 

j,k 
is the k th column of ZF precoding matrix

 

† 
j 
= 

ˆ G j ( ̂  G 

H 
j 

ˆ G j ) 
−1 . 

Similar to [21] , we can obtain the following lower bound of the

rgodic achievable rate, for the k th UT associated with the j th BS,

s 

 j,k = a j,k log 2 
(
1 + � j,k 

)
(4) 

here a j,k (0 ≤ a j,k ≤ 1) is the proportion of RBs that BS j uses

or downlink payload data transmission to UT k ; and the signal-to-

nterference-plus-noise ratio (SINR) is 

� j,k = 
P j 

S j 

∣∣∣E { ˆ g H 
j,k 

a j,k 

} ∣∣∣2 
P j 

S j 

(
E 

{∣∣∣ˆ g H 
j,k 

a j,k 

∣∣∣2 }−
∣∣∣E { ˆ g H 

j,k 
a j,k 

} ∣∣∣2 )+ ∑ 

j 
′ ∈B\ j 

∑ 

k 
′ ∈ S 

j 
′ 

P 
j 
′ 

S 
j 
′ 
E 

{ ∣∣∣∣ˆ g H 
j 
′ 
,k 

a 
j 
′ 
,k 

′ 
∣∣∣∣
2 
} 

+ 1 

(a ) = 

P j 

S j 

∣∣∣E { ˆ g H 
j,k 

g 
† 
j,k 

} ∣∣∣2 
E 

{∥∥∥g 
† 
j,k 

∥∥∥2 
}

P j 

S j 

(
E 

{∣∣∣ˆ g H 
j,k 

g 
† 
j,k 

∣∣∣2 }−
∣∣∣E { ˆ g H 

j,k 
g 

† 
j,k 

} ∣∣∣2 )

E 

{∥∥∥g 
† 
j,k 

∥∥∥2 
} + ∑ 

j 
′ ∈B\ j 

∑ 

k 
′ ∈ S 

j 
′ 

P 
j 
′ 

S 
j 
′ 

E 

{ ∣∣∣∣ˆ g H 
j 
′ 
,k 

g 
† 

j 
′ 
,k 

′ 
∣∣∣∣
2 
} 

E 

{ ∥∥∥∥g 
† 

j 
′ 
,k 

′ 
∥∥∥∥

2 
} + 1 

(b) = 

P j 

S j 

∑ 

j 
′ ∈B\ j 

∑ 

k 
′ ∈ S 

j 
′ 

P 
j 
′ 

S 
j 
′ 
E 

{ ∣∣∣∣ˆ g H 
j 
′ 
,k 

g 
† 

j 
′ 
,k 

′ 
∣∣∣∣
2 
} 

+ E 
{∥∥∥g 

† 
j,k 

∥∥∥2 
} (5)

here (a) is obtained by letting a j,k = 

g 
† 
j,k √ 

E {‖ g † 
j,k 

‖ 2 } 
; (b) is be-

ause G 

† 
j 
= 

ˆ G j ( ̂  G 

H 
j 

ˆ G j ) 
−1 , i.e., ˆ g H 

j,k 
g 

† 

j,k 
= 1 and 

ˆ g H 
j,k 

g 
† 
j,i 

= 0 , ∀ j ∈ B,

 ≤ k ≤ S j , k 	 = i , and ‖ g † 
j,k 

‖ 2 = ‖ g † 
j 
′ 
,k 

′ ‖ 2 . 
We next state a Proposition 1 , which derive an analytical

losed-form expression for the proposed lower bound of the er-

odic achievable rate. 3 

roposition 1. With ZF, M j > S j , an exact closed-form lower bound

n the achievable rate of the kth UT associated with the jth BS can be

xpressed as 

 j,k = a j,k log 2 

( 

1 + 

P j β j,k 

(
M j − S j 

)(
1 − σ 2 

e 

)
S j 
(∑ 

j ′ ∈B\ j P j ′ β j ′ ,k 
(
1 − σ 2 

e 

)
+ 1 

)
) 

. (6) 
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2.4. Formulation problem 

Based on the regime that each UT can only be associated with

one BS, we introduce a matrix X = [ x j,k ] to describe the user al-

location indicator, where x j,k is the binary index variable, which

satisfies : x j,k = 1 if and only if UT k is associated with BS j , and

x j,k = 0 otherwise. Accordingly, each user throughput from the j th

BS to the k th UT is given by 

r j,k = x j,k R j,k . (7)

In this paper, our aim is to achieve the maximization of net-

work utility by jointly optimizing user association and power allo-

cation for a downlink Massive MIMO HetNet network with imper-

fect CSI. We define the α-fairness utility function of the system as

[26] 

 α(x ) = 

{ 

log x α = 1 

x 1 −α

1 − α
α > 0 , α 	 = 1 

(8)

where α denotes a fairness parameter, which will determine the

level of fairness among UTs. Specifically, when α = 1 , the utility

function is the logarithm of the objective variable (which is known

as proportional fairness); when α → ∞ , the utility function is the

worst-case of the objective variable (which is known as max-min

fairness). Therefore, the optimization problem, which is to maxi-

mize the total network utility with respect to r j,k , can be formu-

lated as 

max 
X , P 

∑ 

k ∈U 

∑ 

j∈B 
U α

(
r j,k 

)
(9a)

s.t. 0 ≤ r j,k ≤ R j,k , ∀ j ∈ B, k ∈ U (9b)

∑ 

k ∈U 
R j,k ≤ C j , ∀ j ∈ B (9c)

0 ≤ P j ≤ P max, j , ∀ j ∈ B (9d)

∑ 

k ∈U 
x j,k ≤ S j , ∀ j ∈ B (9e)

∑ 

j∈B 
x j,k = 1 , ∀ k ∈ U (9f)

x j,k = { 0 , 1 } , ∀ j ∈ B, k ∈ U (9g)

where P = [ P 1 , . . . , P J+1 ] is the transmit power vector of all BSs; (9c)

is the backhaul constraint, and where C j denotes the maximum

backhaul capacity of BS j ; (9d) is the transmit power constraint,

and where P max,j is the maximum transmit power of BS j ; (9e) is

the load constraint of BS j ; (9b), (9f) and (9g) illustrate that each

UT is only associate with one BS. 

3. Solution to the optimization problem 

The maximization problem in (9) is a non-convex MINLP due

to the involvement of the binary variable x j,k . Theoretically, the

global optimal solution for user association and power allocation

is obtained by using the exhaustive search method. However, this

method has huge computational complexity in practice. Therefore,

to solve the proposed non-convex problem efficiently, we design

a sub-optimal optimization algorithm by employing LDD [27] . By

introducing an auxiliary constraint, we first transform the original

problem (9) as 

max 
X , P 

∑ 

k ∈U 

∑ 

j∈B 
U α

(
r j,k 

)
(10a)
P

s.t. (9b) − (9g) 

0 ≤ a j,k ≤ x j,k , ∀ j ∈ B, k ∈ U . (10b)

In (10), the constraints (9b)-(9g) will not be tightened by in-

roducing constraint (10b), this is because a j,k ≤ x j,k = 1 if UT k is

ssociated with BS j , while a j,k = x j,k = 0 if UT k is not associated

ith BS j . It is worth noting that, for parameter a j,k at BS j , we will

dopt the equal allocation scheme [9] , i.e., a j,k = 

1 ∑ 

k ∈U x j,k 
. 

.1. User association 

We now study the user association subproblem under a given

ransmit power P . Based on the LDD approach, we can relax the

oupled constraint (10b) by introducing the non-negative dual vari-

bles ψ = [ ψ j,k ] . Therefore, we can obtain a partial Lagrangian dual

roblem associated with (10) as 

in 

ψ ≥0 
D 

(
ψ 

)
= F 

(
ψ 

)
+ G 

(
ψ 

)
(11)

here 

 

(
ψ 

)
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

max 
P 

∑ 

k ∈U 
∑ 

j∈B 
(
U α

(
r j,k 

)
− ψ j,k a j,k 

)
s.t. (9b) − (9d) 

a j,k ≥ 0 

(12)

nd 

 

(
ψ 

)
= 

{
max 

X 

∑ 

k ∈U 
∑ 

j∈B ψ j,k x j,k 

s.t. (9e) − (9g) . 
(13)

We can know from (13) that, when the optimal value ψ 

∗ of

11) is obtained, a local optimal user association solution can be

xpressed as 

 

∗
j,k = 

{ 

1 if j = arg max 
j∈ B 

ψ 

∗
j,k 

0 otherwise . 
(14)

In general, we can use a sub-gradient method to alternatively

pdate the dual variables [28] , so as to obtain an optimal ψ 

∗ of

ual problem (11) . However, in each update iteration, we have to

ompute the sub-gradient of D ( ψ), as well solve the constrained

ptimization problem (12) and (13) . Thus, the computational cost

f the above method is usually high. Here, we provide an efficient

ethod to find the optimal solution of problem (11) indirectly, as

hown in Theorem 1 . 

heorem 1. The optimal solution { ϖ∗, β∗, ϕ∗, η∗, ψ 

∗} of the convex

ptimization problem (15) is such that ψ 

∗ is the optimal solution of

roblem (11) . 

min { � , β, ϕ , η, ψ } 
0 

∑ 

k ∈U 

∑ 

j∈B 
V ρ

(
	 j,k 

)
+ 

∑ 

j∈B 
β j C j + 

∑ 

j∈B 
ϕ j S j + 

∑ 

k ∈U 
ηk 

s.t. 
(
	 j,k − β j 

)
R̄ j,k − ψ j,k ≤ 0 , ∀ j ∈ B, k ∈ U 

ψ j,k − ϕ j − ηk ≤ 0 , ∀ j ∈ B, k ∈ U (15)

where { ϖ, β, ϕ , η, ψ} �0 denotes all elements of ϖ, β, ϕ , η, ψ
re greater than zero, respectively, i.e., ϖj,k > 0, β j > 0, ϕj > 0,

k > 0, ψ j,k > 0, ∀ j ∈ B, k ∈ U; R̄ j,k = R j,k /a j,k ; the function V ρ ( x )

s defined as 

 ρ (x ) = 

⎧ ⎨ 

⎩ 

−log (x ) − 1 ρ = 1 

x 1 −ρ

ρ − 1 

ρ > 0 , ρ 	 = 1 

(16)

nd where ρ = 1 /α. 

roof. See Appendix B . �
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In (16) , the objective function is differentiable and all of con-

traints are linear, thereby, the optimal set { ϖ∗, β∗, ϕ∗, η∗, ψ 

∗}

an be solved by using the CVX tool [29] . Once ψ 

∗ = [ ψ 

∗
j,k 

] is

nown, the user association matrix X 

∗ = [ x ∗
j,k 

] is obtained accord-

ng to (14) , which can be used for power allocation strategy in next

ubsection. 

.2. Power allocation 

With given X 

∗ = [ x ∗
j,k 

] , the optimization subproblem on power

llocation can be formulated as 

max 
P 

∑ 

k ∈U 

∑ 

j∈B 
U α

(
r j,k 

)
s.t. 

∑ 

k ∈U 
R j,k ≤ C j , ∀ j ∈ B 

0 ≤ P j ≤ P max, j , ∀ j ∈ B. (17) 

The direct solution to problem (17) is complicated, because the

bjective function has two-layer logarithmic function when α = 1 ,

r it will be the product of multiple logarithmic functions when

> 0, α 	 = 1. By utilizing the convexity of the function R j,k in P j ,

n equivalent optimization problem of (17) is expressed as 

max 
R 

∑ 

k ∈U 

∑ 

j∈B 
U α

(
x ∗j,k R j,k 

)
s.t. 

∑ 

k ∈U 
R j,k ≤ C j , ∀ j ∈ B 

0 ≤ 2 

R j,k /a j,k − 1 

� j,k 

≤ P max, j , ∀ j ∈ B (18) 

here � j,k = 

β j,k (M j −S j )(1 −σ 2 
e ) 

S j ( 
∑ 

j 
′ ∈B\ j P j ′ β j 

′ 
,k 

(1 −σ 2 
e )+1) 

, and R = [ R j,k ] . Since (18) is

 convex optimization problem in R j,k , we can obtain the optimal

olution R 

∗ = [ R ∗
j,k 

] . After some algebraic manipulation, the opti-

al power allocation P 

∗ = [ P ∗
j 
] to problem (17) can be obtained. In

his work, we employ the gradient assisted binary search (GABS)

ethod to solve problem (18) [30] , as shown in Algorithm 1 . We

enote U(R ) = 

∑ 

k ∈U 
∑ 

j∈B U α(x ∗
j,k 

R j,k ) . 

lgorithm 1 GABS-based power allocation algorithm. 

1: Initialization: R 0 , maximum tolerance ε, iteration number t = 0

and the maximum number of the iterations t max . 

2: repeat 

3: Use the GABS to find the optimal step size δ(t+1) , 

4: R 

(t+1) = 

[
R 

(t) + δ(t+1) ∇U 

(
R 

(t) 
)]+ . 

5: if U 

(
R 

(t+1) 
)

− U 

(
R 

(t) 
)

< ε then 

6: R 

∗ = R 

(t+1) . 

7: else 

8: R 

(t) = R 

(t+1) , t = t + 1 . 

9: end if 

10: until t ≤ t max 

11: Compute the optimal power allocation P ∗
j 

= 

2 
R ∗

j,k 
/a j,k − 1 

� j,k 

, ∀ j ∈
B. 

.3. Joint algorithm development 

Based on the user association and power allocation analyzed

bove, we develop a feasible joint two-layer iterative algorithm as

hown in Algorithm 2 . For the inner layer, we compute the optimal

ser association X 

∗ with a given transmit power. Once the inner

teration achieves convergence, we use Algorithm 1 to obtain the
ptimal power allocation P 

∗ in the outer layer. Thus, when outer

teration achieves convergence, the optimal solution of joint user

ssociation and power allocation can be obtained. 

lgorithm 2 Joint two-layer iterative algorithm. 

1: Initialization: a feasible transmit power P 0 , iteration number

t = 0 and the maximum number of the iterations t max . 

2: repeat 

3: for all j ∈ B, k ∈ U do 

4: Solve problem (15) to find the optimal ψ 

∗ = 

[ 
ψ 

∗
j,k 

] 
with

fixed P . 

5: end for 

6: Calculate X 

∗ = 

[ 
x ∗

j,k 

] 
according to (14). 

7: With specific X 

∗ = 

[ 
x ∗

j,k 

] 
, use Algorithm 1 to find optimal

transmit power vector P 

∗ = 

[ 
P ∗

j 

] 
. 

8: until t ≤ t max 

9: return X 

∗, P 

∗. 

In Algorithm 2 , the computational complexity is mainly deter-

ined by solving problem (15) and exploiting Algorithm 1 . We de-

ne the number of inner and outer iterations is t 1 and t 2 , respec-

ively. Therefore, the overall computational complexity of the pro-

osed joint iterative algorithm is O(t 1 ((3 J + 5) K) 3 + t 2 (J + 1)(2 K +
)) . As a comparison, we consider the complexity of global optimal

cheme using exhaustive search, which is O r ight) , where T is the

ardinal number of power set. Since t 1 and t 2 are finite in the pro-

osed joint algorithm, the complexity of Algorithm 2 is less than

he optimal exhaustive search. 

. Simulation results 

In this section, simulation results are provided to assess the

erformance and effectiveness of the proposed joint resource al-

ocation algorithm for the Massive MIMO HetNet system. In our

imulations, we consider one MBS located in the center of cell cov-

rage area with radius of 500 m, and J PBSs are uniformly dis-

ributed in the macrocell. The minimum distance between MBS

nd PBS is 50 m, and the minimum distance between BS and

T is 40 m. We set the number of PBSs as J = 10 and the num-

er of UTs as K = 20 . Based on the 3GPP LTE standard [6] , the

arge-scale fading coefficients between MBS and UT is modeled as

128 . 1 − 37 . 6 log 10 d + z j,k , and the large-scale fading coefficients

etween PBS and UT is modeled as −148 . 1 − 36 . 7 log 10 d + z j,k ,

here d is the distance between each BS and UT in kilometers;

 j,k ∼ CN (0 , σ 2 ) is a log-normal Gaussian distribution with stan-

ard deviation σ = 8 dB . The maximum transmit powers for MBS

nd PBS are set to P max, 0 = 40 dBm and P max, j = 30 dBm , ∀ j ∈ B p ,

espectively. The maximum number of downlink data streams is

 j = 4 , ∀ j ∈ B. The maximum backhaul capacity of BS j is 50 Mbps,

 j ∈ B. 

In order to demonstrate the tightness of the derived closed-

orm lower bound on the achievable rate, Fig. 1 shows the achiev-

ble rate with different variances of estimated error versus the

umber of transmit antennas at MBS. In this simulation, we com-

are the proposed closed-form lower bound of the achievable rate

ith the original ergodic achievable rate in (4) , with the closed-

orm expression in [13] . In this figure, we set P 0 = 20 dBm and

 j = 10 dBm , ∀ j ∈ B p . The proportion of RB at MBS is assumed to

e a 0 ,k = 0 . 25 . It is shown that the achievable rate of the k th UT

ncreases as the number of transmit antennas at MBS grows. From

ig. 1 , we can observe that our proposed closed-form expression

or the achievable rate is tight. Additionally, we see that there is
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Fig. 1. Achievable rate versus the number of transmit antennas at MBS. 

Fig. 2. Network utility with α = 1 versus the number of transmit antennas at MBS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Network utility with α = 2 versus the number of transmit antennas at MBS. 

Fig. 4. Number of UTs versus α-fairness parameter for different algorithms. 
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o  
a gap between the proposed closed-form expression and the exist-

ing closed-form expression in [13] . That is because the proposed

closed-form expression is derived under imperfect CSI, while the

existing closed-form expression is derived under perfect CSI. In

other words, these gaps are caused by the estimation error at BSs

and the approximation at UTs. 

In Fig. 2 , the total network utility is evaluated versus the num-

ber of transmit antennas at MBS. We set fairness parameter as

α = 1 , and the variance of estimated error is 0.1. We assume that

each PBS has the same number of transmit antennas, i.e., M j = 30 ,

∀ j ∈ B p . Here, we provide the performance improvement of the

proposed joint iterative algorithm in comparison with several ref-

erence algorithms, i.e., max RSRP-UA-OPA, max RSRP-UA-EPA, max

SINR-UA-EPA. 4 In Fig. 2 , the network utility of the system for all

schemes simultaneously increases as the number of transmit an-

tennas at MBS, but the growth rate of the curve becomes slower.

As observed from Fig. 2 , our proposed joint algorithm can achieve

higher network utility than the max RSRP-UA-OPA and the max
4 In max RSRP-UA-OPA, each user associates the BS with the maximum reference 

signal received power (max RSRP) and the optimal power allocation is found by 

exhaustive search. In max RSRP-UA-EPA, each user associates the BS with the max- 

imum RSRP and all BSs adopt the equal power allocation method. In max SINR- 

UA-EPA, each user associates the BS with the maximum SINR and all BSs equally 

allocate power. 

R  

U

 

U  

t  

w  

o  
SRP-UA-EPA, as well as the max SINR-UA-EPA. For example, when

he number of transmit antennas at MBS is 150, the network util-

ty of the proposed joint algorithm is about 11.2% more than that

f the max RSRP-UA-OPA, is about 17.4% more than that of the max

SRP-UA-EPA, and is about 44.1% more than that of the max SINR-

A-EPA. 

Different from the simulation conditions of Figs. 2 , 3 shows the

etwork utility with α = 2 versus the number of transmit anten-

as at MBS. It can be observed that the total network utility still

ncreases with the number of transmit antennas at MBS. We can

ee clearly from Fig. 3 that the performance of the proposed joint

lgorithm is much better than the existing reference algorithms in

erms of total network utility. Among all the algorithms studied,

ax SINR-UA-EPA scheme performs the worst. For example, when

he number of transmit antennas at MBS is 150, the network util-

ty of the proposed joint algorithm is about 41.6% more than that

f the max RSRP-UA-OPA, is about 56.1% more than that of the max

SRP-UA-EPA, and is about 63.9% more than that of the max SINR-

A-EPA. 

Corresponding to Figs. 2 and 3 , 4 plots the load distribution of

Ts under the case of M 0 = 100 , for α = 1 and α = 2 . We can see

hat, regardless of the value of α, the number of UTs associated

ith MBS for the proposed algorithm is the least compared to the

ther algorithms, which will lead to a better load balancing. This
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Fig. 5. Network utility versus the number of iterations. 

Fig. 6. Network utility with α = 1 versus the maximum transmit power at MBS. 

r  

M

 

α  

t  

n  

s  

r  

I  

v  

t  

a

 

t  

M  

s  

n  

P  

P  

i  

m  

s  

T  

i  

o  

a  

i  

σ  

1

5

 

t  

l  

h  

m  

l  

s  

t  

p  

s  

n  

j  

m  

w

D

 

c  

i

A

 

l  

w

E

w  

i

 

p

E

E

eveals that we can reasonably assign some UTs at PBS to avoid

BS overload, and further improve the network utility. 

Fig. 5 evaluates the network utility performance with different

-fairness versus the number of iterations of Algorithm 2 . We set

he number of transmit antennas at MBS as M 0 = 150 , and the

umber of transmit antennas at PBS as M j = 30 , ∀ j ∈ B p . In our

imulations, the convergence of the proposed joint iterative algo-

ithm is also presented with different variance of estimated error.

t can be observed that the proposed joint iterative algorithm con-

erges after about 7 iterations. We can also observe that the sys-

em network utility performance will deteriorate as the error vari-

nce increases. 

In Fig. 6 , we exhibit the network utility with different estima-

ion error variances when the maximum transmit power P max ,0 of

BS is increased from 10 dBm to 40 dBm. In this simulation, we

et fairness parameter as α = 1 . The number of transmit anten-

as at MBS is M 0 = 100 , and the number of transmit antennas at

BS is M j = 30 , ∀ j ∈ B p . The maximum transmit power of PBS is

 max, j = 30 dBm , ∀ j ∈ B p . As observed in Fig. 6 , the network utility

ncreases with the maximum power constraint because the opti-

ization region of P 0 is enlarged. But the network utility increases

lowly as the maximum transmit power constraint grows larger.

his is because the closed-form expression of the achievable rate

n (6) has the Shannon’s capacity bound. As expected, we can also
bserve that the network utility decreases when the error vari-

nce increases. For example, when the maximum transmit power

s 20 dBm, the network utility of the proposed joint algorithm with
2 
e = 0 is about 3.2% more than that with σ 2 

e = 0 . 1 , and is about

4.6% more than that with σ 2 
e = 0 . 3 . 

. Conclusions 

For the Massive MIMO HetNets with imperfect CSI, we studied

he optimization problem of joint user association and power al-

ocation to maximize the system network utility. Under the back-

aul capacity and load constraints, the original non-convex opti-

ization problem was decomposed into user association subprob-

em and power allocation subproblem. An optimal user association

olution was proposed by using the Lagrangian dual method. Given

he user association scheme, we solved the power allocation sub-

roblem by employing GABS approach. Finally, we designed a fea-

ible joint two-layer iterative algorithm to achieve the maximum

etwork utility. The effectiveness and convergence of our proposed

oint iterative algorithm was illustrated, and the superior perfor-

ance of the proposed algorithm was also shown in comparison

ith several reference algorithms. 
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ppendix A 

To obtain a closed-form of R j,k in (4) , we will calculate the fol-

owing expectation. Substituting G 

† 
j 
= 

ˆ G j ( ̂  G 

H 
j 

ˆ G j ) 
−1 into E {‖ g † 

j,k 
‖ 2 } ,

e have 

 

{ ∥∥g 

† 

j,k 

∥∥2 
} 

= E 

{
g 

† H 

j,k 
g 

† 

j,k 

}
= E 

{ [
G 

† H 
j 

G 

† 
j 

]
kk 

} 
= E 

{[(
ˆ G 

H 
j 

ˆ G j 

)−1 
]

kk 

}
= E 

{(
ˆ g 

H 
j,k ̂  g j,k 

)−1 
}

= 

1 

β j,k 

E 

{ (
ˆ h 

H 
j,k 

ˆ h j,k 

)
−1 
} 

= 

1 

β j,k 

E 

{[(
ˆ H 

H 
j 

ˆ H j 

)−1 
]

kk 

}
= 

1 

β j,k S j 
E 

{
tr 
(

ˆ H 

H 
j 

ˆ H j 

)−1 
} (a ) = 

1 

β j,k 

(
M j − S j 

)(
1 − σ 2 

e 

)
(19) 

here (a) is obtained by using the property of Wishart matrix [6] ,

.e., E { tr ( ̂  H 

H 
j 

ˆ H j ) 
−1 } = 

S j 

(M j − S j )(1 − σ 2 
e ) 

. 

The second expectation of the denominator in (5) can be sim-

lified as 

 

{∣∣∣ˆ g 

H 
j ′ ,k g 

† 

j ′ ,k ′ 

∣∣∣2 
}

= E 

{ 
g 

† H 

j ′ ,k ′ ̂
 g j ′ ,k ̂  g 

H 
j ′ ,k g 

† 

j ′ ,k ′ 

} 
= β j ′ ,k E 

{ 
g 

† H 

j ′ ,k ′ ̂
 h j ′ ,k 

ˆ h 

H 
j ′ ,k g 

† 

j ′ ,k ′ 

} 
= β j ′ ,k 

(
1 − σ 2 

e 

)
E 

{ 
g 

† H 

j ′ ,k ′ g 

† 

j ′ ,k ′ 

} 
= β j ′ ,k 

(
1 − σ 2 

e 

)
E 

{ ∥∥g 

† 

j,k 

∥∥2 
} 

E 

{ 
a H 

j ′ ,k ′ a j ′ ,k ′ 
} 

= β j ′ ,k 
(
1 − σ 2 

e 

)
E 

{ ∥∥g 

† 

j,k 

∥∥2 
} 
. (20) 

Substituting (19) into (20) , we obtain 

 

{∣∣∣ˆ g 

H 
j ′ ,k g 

† 

j ′ ,k ′ 

∣∣∣2 
}

= 

β j ′ ,k 

β j,k 

(
M j − S j 

) . (21) 
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The expected results in (6) are obtained by plugging (19) and

(21) into (5) . 

Appendix B 

We consider the optimization problem G ( ψ) in (13) , and relax

x j,k to be a continuous variable. As a result, the problem (13) can

be transformed into 

H 

(
ψ 

)
= 

⎧ ⎨ 

⎩ 

max 
X 

∑ 

k ∈U 
∑ 

j∈B ψ j,k x j,k 

s.t. (9e) − (9f) 

x j,k ≥ 0 , ∀ j ∈ B, k ∈ U . 

(22)

Therefore, the dual problem (11) can be written as 

min 

ψ ≥0 
D 

(
ψ 

)
= F 

(
ψ 

)
+ H 

(
ψ 

)
. (23)

Note that, given P , (23) is a partial Lagrangian dual problem of

the following convex optimization problem 

max 
X 

∑ 

k ∈U 

∑ 

j∈B 
U α

(
r j,k 

)
s.t. (9b) , (9c) , (9e) , (9f) , (10b) 

x j,k ≥ 0 , ∀ j ∈ B, k ∈ U . (24)

For problem (24) , we can obtain its Lagrangian function as 

L 

(
ϑ , λ, β, ϕ , η, ψ , φ, θ

)
= 

∑ 

k ∈U 

∑ 

j∈B 
U α

(
r j,k 

)
+ 

∑ 

k ∈U 

∑ 

j∈B 
ϑ j,k 

(
R j,k − r j,k 

)
+ 

∑ 

k ∈U 

∑ 

j∈B 
λ j,k r j,k 

+ 

∑ 

j∈B 
β j 

( 

C j −
∑ 

k ∈U 
R j,k 

) 

+ 

∑ 

j∈B 
ϕ j 

( 

S j −
∑ 

k ∈U 
x j,k 

) 

+ 

∑ 

k ∈U 
ηk 

( 

1 −
∑ 

j∈B 
x j,k 

) 

+ 

∑ 

k ∈U 

∑ 

j∈B 
ψ j,k 

(
x j,k − a j,k 

)
+ 

∑ 

k ∈U 

∑ 

j∈B 
φ j,k a j,k + 

∑ 

k ∈U 

∑ 

j∈B 
θ j,k x j,k (25)

where ϑ, λ, β, ϕ , η, ψ, φ, θ are the vectors of the dual vari-

ables. We can rewrite the Lagrangian function in (25) with the

decomposition-based method [28] , and it can be expressed as 

L 

(
ϑ , λ, β, ϕ , η, ψ , φ, θ

)
= 

∑ 

k ∈U 

∑ 

j∈B 
L j,k (r j,k ) + 

∑ 

j∈B 
β j C j + 

∑ 

j∈B 
ϕ j S j + 

∑ 

k ∈U 
ηk 

+ 

∑ 

k ∈U 

∑ 

j∈B 

(
ϑ j,k − β j 

)
R j,k + 

∑ 

k ∈U 

∑ 

j∈B 

(
φ j,k − ψ j,k 

)
a j,k 

+ 

∑ 

j∈B 

(
ψ j,k + θ j,k − ϕ j − ηk 

)
x j,k (26)

where L j,k (r j,k ) = U α(r j,k ) − (ϑ j,k − λ j,k ) r j,k . Thus, the full La-

grangian dual problem of (24) is given by 

min 

( ϑ , λ, β, ϕ , η, ψ , φ, θ) 
0 

∑ 

k ∈U 

∑ 

j∈B 

(
max 

r j,k 
L j,k 

(
r j,k 

))

+ 

∑ 

j∈B 
β j C j + 

∑ 

j∈B 
ϕ j S j + 

∑ 

k ∈U 
ηk 

s.t. 
(
ϑ j,k − β j 

)
R̄ j,k + φ j,k − ψ j,k = 0 , ∀ j ∈ B, k ∈ U 

ψ j,k + θ j,k − ϕ j − ηk = 0 , ∀ j ∈ B, k ∈ U . (27)

Based on the objective function of (27) , we have max 
r j,k 

L j,k (r j,k ) =
 ρ (ϑ j,k − λ j,k ) . For simplicity, let 	 j,k = ϑ j,k − λ j,k . Since φj,k > 0

and θ j,k > 0, problem (27) can be written as 
min 

( � , λ, β, ϕ , η, ψ ) 
0 

∑ 

k ∈U 

∑ 

j∈B 
V ρ

(
	 j,k 

)
+ 

∑ 

j∈B 
β j C j + 

∑ 

j∈B 
ϕ j S j + 

∑ 

k ∈U 
ηk 

s.t. 
(
	 j,k + λ j,k − β j 

)
R̄ j,k − ψ j,k ≤ 0 , ∀ j ∈ B, k ∈ U 

ψ j,k − ϕ j − ηk ≤ 0 , ∀ j ∈ B, k ∈ U . (28)

In (28) , the minimum value can be found when λ = 0 , for a

xed vector { β, ϕ, η, ψ}. Consequently, we can obtain the min-

mization problem (15) . Next, we introduce the following Lemma

o prove that the optimal value ψ 

∗ of (15) will be the optimal so-

ution to problem (11) [14] . 

Lemma : Consider the following convex optimization problem 

max 
y 

f (y ) 

s.t. g m 

(y ) ≤ 0 , m = 1 , . . . , M 

h n (y ) = 0 , n = 1 , . . . , N (29)

here g m 

( y ) and h n ( y ) are linear constraints. We assume that a

artial Lagrangian dual problem of (29) is 

min 

ξ̄≥0 

max 
y 

( 

f (y ) −
L ∑ 

m =1 

ξ̄m 

g m 

(y ) 

) 

s.t. g m 

(y ) ≤ 0 , m = L + 1 , . . . , M 

h n (y ) = 0 , n = 1 , . . . , N. (30)

The full Lagrangian dual problem of (29) is expressed as 

min 

ξ≥0 , ζ≥0 , ς ≥0 
max 

y 

( 

f (y ) −
L ∑ 

m =1 

ξm 

g m 

(y ) 

−
M ∑ 

m = L +1 

ζm 

g m 

(y ) + 

N ∑ 

n =1 

ς n h n (y ) 

) 

. (31)

If { ξ∗, ζ∗, ς 

∗} is the optimal solution of (31) , then we have that
∗ is optimal to (30) . 

Based on the above discussion, we know that problem (24) is a

onvex optimization problem with feasible set, and problem (23) is

 partial Lagrangian dual problem of (24) , while problem (28) is

he full Lagrangian dual of (24) and { ϖ∗, λ∗, β∗, ϕ∗, η∗, ψ 

∗} is an

ptimal solution to (28) . According to Lemma , we can obtain the

onclusion that ψ 

∗ is the optimal solution to problem (11) or prob-

em (23) . 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.sigpro.2020.107588 . 
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