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We discovered that a CaF2 ceramic showed a radio-photoluminescence (RPL) phenomenon by X-ray irra-
diation. The RPL observed in the non-doped CaF2 ceramic as a generation of photoluminescence (PL)
emission bands peaking at 660 nm under excitations at 370 and 560 nm, and 760 nm under excitations
at 390 and 610 nm. The emission bands at 660 and 760 nm are due to F2+ and (F2+)A centers, respectively.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Storage phosphors are often used as radiation detectors such as
personal dosimeters and imaging plates. Such materials have a
function to store and accumulate absorbed energy of incident radi-
ations as a form of trapped electrons and holes. Radio-
photoluminescence (RPL) is recognized as a phenomenon in which
stable photoluminescence (PL) centers are newly occurred via
interactions with radiations. In common cases of practical applica-
tions, the RPL is described as a valence change including Ag ion
(Ag+ ? Ag0 and Ag2+) in Ag-doped phosphate glass [1–4] or gener-
ation of defect centers such as F2 and F2+ (2 Mg) in Al2O3:C, Mg [5,6].
The Ag-doped phosphate glass is a well-known material used for
personnel dosimetry, which is commercialized by Chiyoda Technol
Corp. while Al2O3:C, Mg was created by Landauer Inc. for particu-
larly nuclear track detections. In RPL phenomenon, the number
of newly occurred PL centers depends on the radiation dose depos-
ited to the phosphor. For this reason, we can apply the PL intensity
as a measurment of radiation dose, so the RPL is utilized in appli-
cations of personal dosimetery. In comparison with thermally
stimulated luminescence (TSL) and optically stimulated lumines-
cence (OSL) dosimeters, RPL dosimeters have a notable advantage
that a luminescence intensity corresponding to deposited radiation
dose can be read out several time without fading of the lumines-
cence intensity [3,4]. In spite of such advantage, only little phos-
phors are known to possess RPL properties; for example, Ag-
doped phosphate glasses [2], Cu-doped aluminoborosilicate glass
[7], Al2O3:C, Mg [6], Eu-doped material [8], Sm-doped material
[9], Yb-doped NaCl [10], LiF [11], MgF2 [12], Mg2SiO4 [13], K2CO3

[14] and Na2CO3 [15].
In this study, we discovered and reported RPL properties of a

non-doped CaF2 ceramic for the first time. CaF2 has been known
as fluorite for a long time, which is applied to optical lens for high
power laser, astronomical telescope and industrial inspection
equipment having a wide band gap and high durability. In radia-
tion detection field, Dy, Tm and Mn-doped CaF2 are used as TSL
dosimeter because its Zeff is close to the soft tissue [16–18]. Fur-
thermore, OSL properties of CaF2 doped with rare earth or transi-
tion metal were also investigated [19–21]; however, to the best
of our knowledge, there was no study concerning RPL properties
of the non-doped CaF2.
2. Material and methods

The CaF2 ceramic sample was prepared by the spark plasma sin-
tering (SPS) method using Sinter Land LabX-100. The sintering was
carried out by following method in a vacuum. The sintering tem-
perature was raised from 25 to 800 �C with a heating rate of
80 �C/min, and then the sintering condition was maintained at
800 �C with 10 MPa pressure for 10 min. Afterwards, the sintering
temperature was furthermore raised to 1070 �C with a heating rate
of 90 �C/min, and the state was maintained with 70 MPa pressure
for 15 min, and then the sintering was ended.

The X-ray generator (XRB80N100/CB, Spellman) was used as
radiation source, which equipped with an X-ray tube having a W
anode target. The irradiation dose was fixed to 20 Gy. The PL exci-
tation and emission maps and quantum yields were measured by
Hamamatsu Quantaurus QY. The PL excitation and emission maps
were measured over the excitation wavelengths of 250–700 nm
with 10 nm interval. The PL decay curves monitored at 660 and
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760 nm were evaluated by using Hamamatsu Quantaurus-s. Here,
the PL decay constants were estimated by least-square fitting of
decay curve by an exponential decay function. This device is
equipped with seven excitation sources of 280, 340, 365, 405,
470, 590 and 630 nm.
3. Results and discussion

Fig. 1 illustrates an appearance of the non-irradiated and irradi-
ated samples under LED and UV (365 nm) light. It seems like that
there is no difference of the appearance between both non-
irradiated and irradiated samples under LED light,. In comparison
Fig. 2. PL excitation and emission maps of the (a) non-irradiated and (b) irradiated sam
respectively.

Fig. 3. PL decay time profiles monitored at (a) 660 nm under 340 and 590 nm excitations
function.

Fig. 1. (a) Non-irradiated and (c) irradiated samples under LED light, and (b) non-
irradiated and (d) irradiated samples under UV light (365 nm).
with the non-irradiated and irradiated samples under UV light,
the irradiated sample showed red luminescence although the
non-irradiated sample showed no luminescence. This phenomenon
assists an idea that new emission centers were occurred by X-ray
irradiation, which is one of the evidence of RPL phenonmenon.

Fig. 2 shows the PL excitation and emission maps before and
after X-ray irradiation. The non-irradiated sample showed no emis-
sion bands. In contrast, the irradiated sample showed emission
bands peaking around 660 nm with an excitation bands peaking
around 370 and 560 nm, and 760 nm with an excitation bands
peaking around 390 and 610 nm. The maximum PL quantum yield
was 42.6%. According to the previous study, CaF2 shows the emis-
sion band peaking around 645 nm under 360 and 545 nm excita-
tions due to F2+ center [22]. Hence, it is considered that the
emission at 660 nm observed in our samples arises from F2+ center.
On the other hand, the excitation wavelengths at 390 and 610 nm
were approximately consistent with the absorption wavelengths of
(F2+)A center [23]; thus, there is a high possibility that the emission
at 760 nm is due to (F2+)A center.

Fig. 3 represents the PL decay time profiles monitored at
660 nm under 340 and 590 nm excitations, and 760 nm under
405 and 630 nm excitations with an instrumental response func-
tion (IRF). Both the decay curves were well-approximated by an
exponential decay function. The derived decay constants moni-
tored at 660 nm under 340 and 590 nm excitations were 15.9
and 16.8 ns, respectively. In contrast, the obtained decay constants
ples. The horizontal and vertical axes show emission and excitation wavelengths,

, and (b) 760 nm under 405 and 630 nm excitations with the instrumental response
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monitored at 760 nm under 405 and 630 nm excitations were 21.1
and 20.6 ns, respectively. These results back up the above argu-
ment that the origins of the emissions are caused by defects since
significantly short decay constant is a representative feature of
luminescences from defects [12,14]. It should be stressed that con-
ventional materials showing RPL based on the generation of
defects are only LiF, MgF2, Al2O3:C, Mg, Na2CO3 and K2CO3 so far
[5,11–15].

4. Conclusions

We prepared the non-doped CaF2 ceramic by the SPS method,
and then discovered that the CaF2 ceramic showed RPL phe-
nomenon. The X-ray irradiated sample showed the broad emis-
sions peaking at 660 nm under 370 and 560 nm excitations, and
760 nm under 390 and 610 nm excitations. Judging from the exci-
tation wavelengths, the former and latter emissions are due to F2+

and (F2+)A center.
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