

Er:YLF

DESCRIPTION

Er3+:YLF crystals are characterized by low phonon frequency, which decreases the probability of non-radiative multi-phonon relaxations, therefore increases luminescence quantum efficiency. Long lifetime of laser emitting levels allow higher energy storage, which is useful for the Q-switch lasing regime. High band-gap along with low phonon energy determines very wide transparency range, which is possibly from VUV to 10μm region. Negative Er3+:YLF thermo-optic coefficient is an advantage, since it reduces thermal-lensing effect and improves beam shape as well as stability at high average pump power.

APPLICATIONS

- CW and Q-switched ~3 µm lasers for oral surgery, dentistry, implant dentistry, and otolaryngology
- Up-conversion visible lasers for display technology, medicine (diagnosis and treatment)

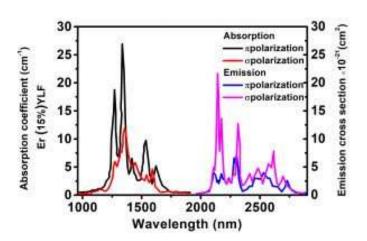
FEATURES

- A low phonon frequency
- · Long lifetimes of the laser emitting levels
- · Negative thermo-optic coefficient
- · Custom crystals available upon request
- Wide transparency range (from the VUV to the 10 µm region)

PARAMETERS

Material and Specifications

Orientation	A-cut
Parallelism	<10"
Perpendicularity	<10′
Surface Quality	10-5 S-D
Wavefront Distortion	<№4 per inch@632.8 nm
Surface Flatness	<№10 @632.8 nm
Clear Aperture	>90%
Face Dimensions Tolerance	+0.0/-0.1 mm
Length Tolerance	±0.1mm
Chamfer	<0.1mm@45°


Optical Characteristics

Typical Doping Level	15@.%
Refractive Index (@2070nm)	no=1.442, ne=1.464
Thermo-optic Coefficient (10-6·K-1)	-2(//a), -4.1(//c)
Lifetime of 4I11/2 Erbium Energy Level(ms)	4
Emission Cross Section (10-20/cm2)	1.5@2800nm
Absorption Peak Wavelength	972nm
Absorption Coefficient at Peak Wavelength	28cm-1
Absorption Bandwidth at Peak Wavelength	~1nm
Laser Wavelength	2810nm

Physical and Chemical Properties

Structure Symmetry	Tetragonal
Lattice Constants	a=5.173, c=10.747 Å@1.5%
Specific mass	3.95g/cm3
Melting Point	819°C
Thermal Conductivity (W·m-1·K-1)	\sim 5
Specific Heat(J·g-1·K-1)	0.79
Thermal Expansion (10-6·K-1)	8
Hardness (kg/mm2@Mohs)	5
Young's Modulus /(108g/cm2)	7.65

Spectrum

