FEATURES

- Excellent transmission from 120nm to 7um
- Chemically stable
- Large resistance to thermal shock
- Irradiation does not lead to color centers
- Uniformly distributed Co

APPLICATIONS

- Optical fiber communication
- Wave plate, High Energy WavePlate
- Achromatic Waveplates
- Glanprisms
- Window and focusing mirror for deep uv and excimer lasers

DESCRIPTION

Magnesium Fluoride (MgF2) is commonly used for UV windows, lenses and polarisers. It is also useful in its transmission range for some IR spectroscopy applications. Magnesium Fluoride (MgF2) Windows offer excellent broadband transmission from the deep-UV to the mid-infrared. DUV transmission makes them ideal for use at the Hydrogen Lyman-alpha line and for UV radiation sources and receivers, as well as excimer laser applications. Windows, lenses, and prisms made of this material can be used over the entire range of wavelengths from 0.120 µm (vacuum ultraviolet) to 8.0 µm (infrared). MgF2 is tough and works and polishes well, but it is slightly birefringent and should be cut with the optic axis perpendicular to the plane of the window or lens. Generally, Magnesium Fluoride for laser use is recommended to be oriented along the optic axis to avoid birefringent effects. It is particularly useful for excimer laser application.
MgF₂

PARAMETERS

Material and Specifications

Orientation [100] or [001] < ±0.5°
Orientation Tolerance < 0.5°
Parallelism 5°
Perpendicularity 3°
Surface Quality 10-5 (Scratch/Dig)
Wavefront Distortion <λ/4@632 nm
Surface Flatness <λ/8 @632 nm
Clear Aperture >90%
Chamfer <0.1×45°
Thickness/Diameter Tolerance ±0.05 mm
Maximum Dimensions Dia150 mm×60 mm (C-cut)

Physical and Chemical Properties

Crystal Structure tetragonal
Lattice Constants 4.64
Density 3.18 g/cm³
Melting Point 1255°C
Thermal Conductivity/(W m⁻¹ K⁻¹@25°C) 0.3
Specific Heat/(J g⁻¹ K⁻¹) 1.003
Thermal Expansion / (10⁻⁶ K⁻¹@25°C) 13.7
Hardness (Mohs) 4.15
Young’s Modulus /GPa 138.5

Optical Characteristics

Transmission Range 0.11 ... 7.5 μm
Refractive Index no = 1.3836, ne = 1.3957 @0.405 μm
Reflective Loss 5.1% @4.0 μm; 11.2% @0.12 μm
Poisson Ratio 0.271

Index of Refraction

<table>
<thead>
<tr>
<th>μm</th>
<th>No</th>
<th>Ne</th>
<th>μm</th>
<th>No</th>
<th>Ne</th>
<th>μm</th>
<th>No</th>
<th>Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1137</td>
<td>1.7805</td>
<td>0.1149</td>
<td>1.742</td>
<td>0.1179</td>
<td>1.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1198</td>
<td>1.651</td>
<td>0.121</td>
<td>1.628</td>
<td>0.13</td>
<td>1.566</td>
<td>1.568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.14</td>
<td>1.5095</td>
<td>1.523</td>
<td>0.15</td>
<td>1.494</td>
<td>0.16</td>
<td>1.461</td>
<td>1.475</td>
<td></td>
</tr>
<tr>
<td>0.17</td>
<td>1.448</td>
<td>1.462</td>
<td>0.18</td>
<td>1.439</td>
<td>1.453</td>
<td>0.19</td>
<td>1.431</td>
<td>1.444</td>
</tr>
<tr>
<td>0.2</td>
<td>1.423</td>
<td>1.437</td>
<td>0.22</td>
<td>1.413</td>
<td>1.426</td>
<td>0.248</td>
<td>1.403</td>
<td>1.416</td>
</tr>
<tr>
<td>0.257</td>
<td>1.401</td>
<td>1.414</td>
<td>0.266</td>
<td>1.399</td>
<td>1.412</td>
<td>0.28</td>
<td>1.396</td>
<td>1.409</td>
</tr>
<tr>
<td>0.3</td>
<td>1.393</td>
<td>1.405</td>
<td>0.33</td>
<td>1.389</td>
<td>1.402</td>
<td>0.337</td>
<td>1.389</td>
<td>1.401</td>
</tr>
<tr>
<td>0.35</td>
<td>1.387</td>
<td>1.4</td>
<td>0.355</td>
<td>1.386</td>
<td>1.399</td>
<td>0.4</td>
<td>1.384</td>
<td>1.396</td>
</tr>
<tr>
<td>0.546</td>
<td>1.379</td>
<td>1.39</td>
<td>0.7</td>
<td>1.376</td>
<td>1.388</td>
<td>1.087</td>
<td>1.373</td>
<td>1.385</td>
</tr>
<tr>
<td>1.512</td>
<td>1.37</td>
<td>1.382</td>
<td>2</td>
<td>1.368</td>
<td>1.379</td>
<td>2.5</td>
<td>1.364</td>
<td>1.375</td>
</tr>
<tr>
<td>3.03</td>
<td>1.36</td>
<td>1.37</td>
<td>3.571</td>
<td>1.354</td>
<td>1.364</td>
<td>4</td>
<td>1.349</td>
<td>1.359</td>
</tr>
<tr>
<td>4.546</td>
<td>1.341</td>
<td>1.35</td>
<td>5</td>
<td>1.334</td>
<td>1.343</td>
<td>5.556</td>
<td>1.324</td>
<td>1.332</td>
</tr>
</tbody>
</table>