• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / Ce:LiCAF

Ce:LiCAF

Ce:LiCAF is perhaps the most extensively studied as a laser and amplifier material because of the absence of color center formation and solarization effects, therefore enabling high-power UV emission. Efficient UV generation through lasing techniques and/or amplification heavily relies on crystal quality and pumping configuration. The gain spectra of Ce:LiCAF is in the range 280–320 nm and is characteristic of the Ce3+ 5d1–4f1 interconfigurational transition. Ce3+-doped colquiriite LiCaA1F6 single crystals (LiCAF:Ce) are not only excellent u.v. fluorescers, but they also exhibit broadband tunable gain in u.v. under pulsed pumping at 266nm. UV solid-state laser materials that are continuously tunable over 4000cm−1, such as and Ce:LiCAF, could service numerous scientific, engineering, and medical applications. This material may also be suited to remote-sensing applications, since molecules such as ozone and aromatic-based compounds have characteristic absorption bands in the UV. For example, the UV tunability provided by Ce:LiCAF could serve as the basis for a UV differential-absorption lidar system that would have the versatility of continuously variable wavelengths. The reliability, compactness, nontoxicity, and high efficiencies offered by solid-state lasers provide many advantages over other tunable coherent ultraviolet sources, such as frequency-doubled dye lasers. Applications in inhospitable environments may also be rendered more practical with an all-solid-state UV source.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Orientation Tolerance5ˊ
Parallelism<10〞
Perpendicularity5ˊ
Chamfer0.1mm@45°
Surface Quality10/5 or better
Wavefront Distortionλ/8 @632.8 nm
Surface Flatnessλ/10 @632.8 nm
Clear Aperture>95%
Diameter Tolerance+0/-0.05mm
Length Tolerance±0.1mm
CoatingsAs per requirement
Dopant Concentration Tolerance0.10%
Physical and Chemical Properties
Crystal StructureTrigonal
Space GroupP31C
Lattice Constantsa=4.9808, c=9.6052Å@1mol%CeF3
Density (g/cm3)2.94
Melting Point766°C
Thermal Conductivity(W·m-1·K-1)3.09-2.9
Thermal Expansion(10-6K-1)24.3(∥a), 2.7(∥c)
Optical Characteristics
Absorption Peak Wavelength(nm) 640
Absorption Cross-section(10-18cm2)@266nm 7.3(π), 5.8(σ)
Absorption Coefficient@266nm4cm-1
Refractive Indexn=1.41
Laser Wavelength(nm)266
Fluorescence Lifetime(μs)25
Spontaneous Emission Constant(10-10cm·s-2)0.2
Emission Cross-section(10-18cm2)@290nm9.6(π), 6.2(σ)
Laser Threshold(μJ)15-25
Estimated Pumping Efficiency50(π), 33(σ)
ESA Cross-section(10-18cm2)@266nm5.5π), 6.2(σ)
Gain Cross-section(10-18cm2)@290nm6.0(π), 4.0(σ)
Saturation Fluence(mJ/cm2)115
Spectrum

Feature
Application
Literature
Feature
  • The gain spectra of Ce:LiCAF are in the range 280–320 nm
  • Characteristic of the Ce3+5d1–4f1 interconfigurational transition
  • Absence of solarization effects
  • Transparency, tolerance to laser-induced damage
  • o be directly pumped
  • Can be directly pumped at 266 nm by the fourth harmonic generation of Nd:YAG laser
  • Broad UVtunability (from 280 to 325 nm)
Application
  • Scintillator
  • Tunable ultraviolet lasers
  • Remote-sending applications
  • Ultrafast pulse generation and amplification
  • Power UV laser amplifiers
Literature
[1] Maria, Luisa, Grilli, et al. Al2O3/SiO2 and HfO2/SiO2 dichroic mirrors for UV solid-state lasers[J]. Thin Solid Films, 2009.
[2]  Bayramian A J ,  Marshall C D ,  Wu J H , et al. Ce:LiSrAlF6 Laser Performance with Antisolarant Pump Beam[J]. Journal of Luminescence, 1996, 69(2):85-94.
[3]  Yamaji A ,  Yokota Y ,  Yanagida T , et al. Crystal growth and dopant segregation of Ce:LiSrAlF_6 and Eu:LiSrAlF_6 crystals with high dopant concentrations[J]. Journal of Crystal Growth, 2012, 352(1):p.106-109.
[4]  Mcgonigle A ,  Coutts D W ,  Girard S , et al. A 10 kHz Ce:LiSAF laser pumped by the sum-frequency-mixed output of a copper vapour laser[J]. Optics Communications, 2003, 193(1-6):233-236.
[5]  Tanaka C ,  Yokota Y ,  Kurosawa S , et al. Crystal growth and optical properties of indium doped LiCaAlF6 scintillator single crystals[J]. Optical Materials, 2016:S092534671630595X.
[6]  Yamaji A ,  Yanagida T ,  Kawaguchi N , et al. Crystal growth and scintillation properties of Ce and Eu doped LiSrAlF_6[J]. Nuclear Instruments & Methods in Physics Research, 2011, 659(1):p.368-372.
[7]  Watanabe K ,  Yamazaki T ,  Dai S , et al. Wavelength-shifting fiber signal readout from Transparent RUbber SheeT (TRUST) type LiCaAlF6 neutron scintillator[J]. Nuclear Inst & Methods in Physics Research A, 2015, 784(jun.1):260-263.
[8]  Yanagida T ,  Fujimoto Y ,  Yamaji A , et al. Study of the correlation of scintillation decay and emission wavelength[J]. Radiation Measurements, 2013, 55:99-102.
[9]  Shavelev A A ,  Nizamutdinov A S ,  Marisov M A , et al. Single crystals with advanced laser properties LiCaAlF 6 :Ce 3+ grown by Bridgman technique[J]. Journal of Crystal Growth, 2018, 485:73-77.
[10] Neutron–gamma discrimination based on pulse shape discrimination in a Ce:LiCaAlF 6 scintillator[J]. Nuclear Instruments & Methods in Physics Research, 2011, 652(1):435-438.
[11]  Castillo V K ,  Quarles G J . Progress in the crystal growth of Ce : colquiriites[J]. Journal of Crystal Growth, 1997, 174(1):337–341.
[12] Spectroscopic properties of UV active medium Ce3+:LiSr0.8Ca0.2AlF6[J]. Optical Materials, 2016, 52:157-162.
[13]  Spence D J ,  Liu H ,  Coutts D W . Low-threshold miniature Ce:LiCAF lasers[J]. Optics Communications, 2006, 262(2):238-240.
[14] K Shimamura and H Sato and A Bensalah and H Machida and N Sarukura and T Fukuda. Growth of Ce-doped Colquiriite- and Scheelite-type single crystals for UV laser applications[J]. Optical Materials, 2002.
[15]  Tsuboi T ,  Petrov V ,  Noack F , et al. Femtosecond relaxation in Ce3+ ions in LiCaAlF6 and LiSrAlF6[J]. Journal of Alloys & Compounds, 2001, 323(none):688-691.
[16]  A M A F ,  A B E O ,  A M C , et al. Evaluation of Eu:LiCAF for neutron detection utilizing SiPMs and portable electronics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 908:110-116.
[17]  Tanaka C ,  Yokota Y ,  Kurosawa S , et al. Growth and radioluminescence of metal elements doped LiCaAlF6 single crystals for neutron scintillator[J]. Radiation Measurements, 2016:170-173.
[18]  Liu Z ,  Shimamura K ,  Fukuda T , et al. High-energy pulse generation from solid-state ultraviolet lasers using large Ce:fluoride crystals[J]. Optical Materials, 2002, 19(1):123-128.
[19] Micro-pulling-down-method-grown Ce:LiCAF crystal for side-pumped laser amplifier[J]. Journal of Crystal Growth, 2011, 318(1):737-740.
[20]  Shiran N ,  Gektin A ,  Neicheva S , et al. Energy storage in Ce-doped LiCaAlF 6 and LiSrAlF 6 crystals[J]. Radiation Measurements, 2004, 38(4-6):459-462.
[21]  Tanaka C ,  Yokota Y ,  Kurosawa S , et al. Effects of Na co-doping on optical and scintillation properties of Eu:LiCaAlF6 scintillator single crystals[J]. Journal of Crystal Growth, 2016:S0022024816306984.
[22]  Yokota Y ,  Tanaka C ,  Kurosawa S , et al. Effects of Ca/Sr Ratio Control on Optical and Scintillation Properties of Eu-doped Li(Ca,Sr)AlF 6 Single Crystals[J]. Journal of Crystal Growth, 2018, 490:71-76.
[23]  Johnson K S ,  Pask H M ,  Withford M J , et al. Efficient all-solid-state Ce:LiLuF laser source at 309 nm[J]. Optics Communications, 2005, 252(1):132-137.
[24] Yanagida, T, Yoshikawa, et al. Crystal growth, optical properties, and a-ray responses of Ce-doped LiCaAlF6 for different Ce concentration[J]. OPTICAL MATERIALS -AMSTERDAM-, 2009.
[25]  Yoshikawa A ,  Iguchi T ,  Boulon G , et al. Development of novel rare earth doped fluoride and oxide scintillators for two-dimensional imaging[J]. Journal of Rare Earths, 2011, 29(012):1178-1182.
[26]  Iwanowska J ,  Swiderski L ,  Moszynski M , et al. Thermal neutron detection with Ce 3+ doped LiCaAlF 6 single crystals[J]. Nuclear Instruments & Methods in Physics Research, 2011, 652(1):319-322.
[27] None. Author index to volumes 251–260[J].  1996, 251-260(index-I):1-79.
[28]  Shiran N ,  Gektin A ,  Neicheva S , et al. Energy transfer in pure and Ce-doped LiCaAlF6 and LiSrAlF6 crystals[J]. Nuclear Inst & Methods in Physics Research A, 2005, 537(1/2):266-270.
[29]  Fedyanin D Y ,  Arsenin A V . Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes[J]. Photonics and Nanostructures – Fundamentals and Applications, 2010, 8(4):264-272.
[30]  Uesaka M ,  Tagi K ,  Dobashi K , et al. 30 MeV X-band Electron Linac Neutron Source for Nuclear Data Study for Fukushima Accident Analysis[J]. Physics Procedia, 2014, 60:193-202.

Related Product

LiCAF-Crystal-Halide-Crylink
LiCAF
Cr-LiCAF-Crystal-Halide-Crylink
Cr:LiCAF
Ce-LiSAF-Crystal-Halide-Crylink
Ce:LiSAF

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685/+86-021-69913696
Address: NO.599 Huiwang East Road, Jiading District, Shanghai
                 NO.22 Jingang Road, Lishui District, Nanjing city
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.