• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / LiCAF

LiCAF

Lithium calcium hexafluoroaluminate(LiCAF) crystals are widely used as vacuum ultraviolet(VUV) and ultraviolet(UV) laser host media. It has excellent transmission characteristics down to the vacuum ultraviolet (VUV) region. The transmission edge of LiCAF was measured experimentally to be 112nm. In particular, LiCAF has a transmittance of over 95% at 157nm, which corresponds to the wavelength of an F2 laser. It was also shown that LiCAF becomes virtually non-birefringent around 152nm, thereby making it an attractive optical window material for VUV laser sources LiCAF(LiCaAIF6) are excellent laser materials with high energy storage and high slope efficiency, also ideal working material under conditions of ultra short pulse and ultra high power.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Orientation Tolerance5ˊ
Parallelism<10〞
Perpendicularity5ˊ
Chamfer0.1mm@45°
Surface Quality10/5 or better
Wavefront Distortionλ/8 @632.8 nm
Surface Flatnessλ/10 @632.8 nm
Clear Aperture>95%
Diameter Tolerance+0/-0.05mm
Length Tolerance±0.1mm
CoatingsAs per requirement
Damage Thresholdover 15J/cm2 TEM00, 10ns, 10Hz
Dopant Concentration Tolerance0.10%
Physical and Chemical Properties
LatticeHexagonaL
Space GroupP31C
Lattice Constantsa=5.006, c=9.636Å
Density (g/cm3)2.94
Melting Point825°C
Thermal Conductivity(W·m-1·K-1)5.14(∥a), 4.58(∥c)
Thermal Expansion(10-6·K-1)3.6(∥a), 22(∥c)
Specific Heat(J·g-1·K-1)0.935
Fracture Toughness(MPa·m1/2)0.18~0.37
Band Gap(eV)@LDA8.02(indirect)
Young’s Modulus(GPa)105.32(∥a), 94.89(∥c)
Bulk Modulus(GPa)108.01
Dielectric Constant1.27
Optical characteristics
Absorption Edge 112nm
Refractive Indexno=1.3826, ne=1.3826@632,8nm
Thermal-optical Coefficient(10-6/°C)-7.3(no), -4.9(ne)
Index of Refraction
Wavelength(nm)none
632.81.38261.3826
546.11.3841.384
435.81.38621.3862
253.71.40611.4073
Spectrum

Feature
Application
Literature
Feature
  • Large band gaps and low phonon energies
  • Optical transmission and low thermal lensing distortion
  • Absorption edge is 112nm
  • Small non-linear refractive indices
  • Transparency, tolerance to laser-induced damage
Application
  • Lase host media
  • Lens in VUV photolithography
Literature
[1]  Tanaka C ,  Yokota Y ,  Kurosawa S , et al. Crystal growth and optical properties of indium doped LiCaAlF6 scintillator single crystals[J]. Optical Materials, 2016:S092534671630595X.
[2]  Yoshikawa A ,  Yanagida T ,  Yokota Y , et al. Crystal growth and VUV luminescence properties of Er3+- and Tm3+-doped LiCaAlF6 for detectors[J]. Optical Materials, 2010, 32(9):845-849.
[3]  Abdulsabirov R Y ,  Dubinskii M A ,  Korableva S L , et al. Crystal growth, EPR and site-selective laser spectroscopy of Gd 3+-activated LiCaALF 6 single crystals[J]. Journal of Luminescence, 2001, 94(none):113-117.
[4] Kiyoshi Shimamura and Sonia L Baldochi and Izilda M Ranieri and Hiroki Sato and Tomoyo Fujita and Vera L Mazzocchi and Carlos B.R Parente and Carlos O Paiva-Santos and Celso V Santilli and Nobuhiko Sarukura and Tsuguo Fukuda. Crystal growth of Ce-doped and undoped LiCaAlF6 by the Czochralski technique under CF4 atmosphere[J]. Journal of Crystal Growth, 2001.
[5]  Ford M A , BE O’Day,  Mcclory J W , et al. Development of a neutron spectrometer utilizing rubberized Eu:LiCAF wafers[J]. Nuclear Instruments & Methods in Physics Research, 2019.
[6]  Yoshikawa A ,  Iguchi T ,  Boulon G , et al. Development of novel rare earth doped fluoride and oxide scintillators for two-dimensional imaging[J]. Journal of Rare Earths, 2011, 29(012):1178-1182.
[7]  Gaabel K M ,  Russbuldt P ,  Lebert R , et al. Diode pumped Cr^3^+:LiCAF fs-laser[J]. OPTICS COMMUNICATIONS, 1998.
[8]  Fasoli M ,  Vedda A ,  Moretti F , et al. Effect of Eu and Pb doping on the dosimetric properties of LiCAF[J]. Radiation Measurements, 2010, 45(3-6):556-558.
[9]  Tanaka C ,  Yokota Y ,  Kurosawa S , et al. Effects of Na co-doping on optical and scintillation properties of Eu:LiCaAlF6 scintillator single crystals[J]. Journal of Crystal Growth, 2016:S0022024816306984.
[10]  A M A F ,  A B E O ,  A M C , et al. Evaluation of Eu:LiCAF for neutron detection utilizing SiPMs and portable electronics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 908:110-116.
[11]  Luong M V ,  Empizo M ,  Cadatal-Raduban M , et al. First-principles calculations of electronic and optical properties of LiCaAlF6 and LiSrAlF6 crystals as VUV to UV solid-state laser materials[J]. Optical Materials, 2016, 65.
[12]  Sato H ,  Machida H ,  Nikl M , et al. Growth and characterization of aliovalent ion-doped LiCaAlF 6 single crystals[J]. Journal of Crystal Growth, 2003, 250(1):83-89.
[13]  Shimamura K ,  Na M ,  Nakano K . Growth and Characterization of Ce-Doped LiCaAlF6 Single Crystals[J]. Journal of Crystal Growth, 1999, 197(4):896-900.
[14]  Tanaka C ,  Yokota Y ,  Kurosawa S , et al. Growth and radioluminescence of metal elements doped LiCaAlF6 single crystals for neutron scintillator[J]. Radiation Measurements, 2016:170-173.
[15]  Shimamura K ,  Baldochi S L ,  Na M , et al. Growth of Ce-doped LiCaAlF6 and LiSrAlF6 single crystals by the Czochralski technique under CF4 atmosphere[J]. Journal of Crystal Growth, 2000, 211(1/4):302-307.
[16]  Dk A ,  Gla B ,  Pr A . Growth of Cr:LiCaAlF 6 and Cr:LiSrAlF 6 by the Czochralski method[J]. Journal of Crystal Growth, 2000, 210( 4):683-693.
[17]  Sato H ,  Bensalah A ,  Yoshikawa A , et al. Improvement in the quality of LiCaAlF 6 single crystal as window material[J]. Optical Materials, 2003, 24(1-2):123-127.
[18]  Vazquez R M ,  Santos M T ,  Lopez F J . Influence of neutral environment in the growth of Cr-doped LiCAF/LiSAF crystals: X-ray powder diffraction and EPR analysis[J]. Journal of Crystal Growth, 2002, s 237–239:894-898.
[19]  Samtleben T A ,  Hulliger J . LiCaAlF6 and LiSrAlF6: Tunable solid state laser host materials[J]. Optics and Lasers in Engineering, 2005, 43(3-5):251-262.
[20]  Stanciu M ,  Grattan K . LiCAF crystal-based optical fiber thermometry[J]. Sensors & Actuators A Physical, 2002, 99(3):277-283.
[21]  Castillo V K ,  Chang R . Material and laser characterizations of intermediate compositions of Ce:LiSrxCa1-xAlF6[J]. Journal of Crystal Growth, 2001, 225(2-4):445-448.
[22] Futami, Kurosawa, Watanabe,等. Neutron detection with LiCaAlF_6 scintillator doped with 3d-transition metal ions.
[23]  Kozeki T ,  Suzuki Y ,  Sakai M . Observation of new excitation channel of cerium ion through highly vacuum ultraviolet transparent LiCAF host crystal[J]. Journal of Crystal Growth, 2001, 229:501-504.
[24]  Kole M ,  Chauvin M ,  Fukazawa Y , et al. PoGOLino: A scintillator-based balloon-borne neutron detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015.
[25]  Castillo V K ,  Quarles G J . Progress in the crystal growth of Ce : colquiriites[J]. Journal of Crystal Growth, 1997, 174(1):337–341.
[26]  Gvishi R ,  Gonen E ,  Kalisky Y . Studies of the spectroscopic behavior of Cr+3:LiCAF pumped by a solid-state dye laser[J]. Optical Materials, 1999, 13(1):129-133.
[27] Yokota, Yuui, Yoshikawa,等. Temperature-dependent evaluation of Nd:LiCAF optical properties as potential vacuum ultraviolet laser material.
[28]  Sato H ,  Bensalah A ,  Solovieva N , et al. X-ray damage characterization in BaLiF3,KMgF3 and LiCaAlF6 complex fluorides[J]. Radiation Measurements, 2004, 38(4-6):463-466.
[29]  BirsenAyaz-Maierhafer,Carl G.Britt,Andrew J.August,HairongQi,Carolyn E.Seifert,Jason P.Hayward,Design optimization for a wearable, gamma-ray and neutron sensitive, detector array with directionality estimation,ScienceDirect,Volume 870, 21 October 2017, Pages 131-139

Related Product

Ce-LiCAF-Crystal-Halide-Crylink
Ce:LiCAF
Cr-LiCAF-Crystal-Halide-Crylink
Cr:LiCAF
LiSAF-Crystal-Halide-Crylink
LiSAF

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685/+86-021-69913696
Address: NO.599 Huiwang East Road, Jiading District, Shanghai
                 NO.22 Jingang Road, Lishui District, Nanjing city
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.