• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / SrF2

SrF2

Strontium Fluoride (SrF2) is one of the most important alkaline-earth fluorides. It has many physical properties, such as low energy phonon, high ionization, high resistance coefficient and good anion conductivity. It has been widely used in light-emitting devices, optical imaging, biomarkers, anion conductors and other fields. Compared with oxide and calcium fluoride, strontium fluoride has lower phonon energy, higher thermal conductivity and negative thermal optical coefficient, especially negative thermal optical coefficient, which can compensate the thermal lens effect in the process of laser oscillation. Strontium fluoride has promoted the research of optical materials and the improvement of optical instruments with its unique material structure and properties

Download PDF
Ask for a test Sample FREE

Parameter

Physical and Chemical Properties
Crystal StructureSingle crystal, synthetic
Crystal TypeCubic (CaF2 type)
Lattice Constants5.7996
Density4.24 g/cm3
Melting Point1477°C
Thermal Conductivity /(W·m-1·K-1@298k)1.42
Specific Heat Capacity/ (J·kg-1·K-1)544
Thermal Expansion /(10-6·K-1@293k )18.4
Hardness (Mohs)130
Young`s Modulus /(GPa)99.91
Shear Modulus /(GPa)34.6
Bulk Modulus /(GPa)24.65
Elastic Coefficient/(GPa)C11=124; C12=44; C44= 31.8
Cleavage-111
Solubility in Water/(g/100g)0.021@298K
Optical characteristics
Transmission Range (50%)0.14 … 9µm @thickness 2mm  
Refractive Index  1.436914@633nm 
Reflective Loss 1.74% @10 µm  
Poisson Ratio0.29
Dielectric Constant7.69@2MHz
Reststrahlen40µm
Index of Refraction

Spectrum

Feature
Application
Literature
Feature
  • Poorly soluble in water, ethanol and methanol
  • High conductivity and optical properties similar to calcium fluoride
  • Can transmit ultraviolet and infrared waves
  • Very dangerous to the health, poisonous when inhaled or ingested and in low concentration can cause irritation to skin and eyes.
  • Not flammable
Application
  • UV and VUV spectroscopy
  • Manufacture optical materials for different devices, like glasses, windows and lenses
  • Intermediate infrared laser matrix material
Literature
[1]  Yagoub M ,  Swart H C ,  Coetsee E . Effect of Yb 3+ ions on Structural and NIR emission of SrF 2 :Eu 2+ /Pr 3+ down-conversion containing Na + ions[J]. Materials Research Bulletin, 2017, 93:170-176.
[2]  Karimi M ,  Hesaraki S ,  Nezafati N . In vitro biodegradability–bioactivity–biocompatibility and antibacterial properties of SrF 2 nanoparticles synthesized by one-pot and eco-friendly method based on ternary strontium chloride-choline chloride-water deep eutectic system[J]. Ceramics International, 2018:12877-12885.
[3] Thermoluminescence dosimetry features of DY and Cu doped SrF2 nanoparticles under gamma irradiation[J]. Applied Radiation & Isotopes, 2015, 105:ARID1500488.
[4]  Gao Y ,  Mei B ,  Li W , et al. Effect of Yb3+ concentration on microstructure and optical properties of Yb: SrF2 transparent ceramics[J]. Optical Materials, 2020, 105:109869.
[5] 李建刚, 何向明, 赵如松. Electrochemical performance of SrF2-coated LiMn2O4 cathode material for Li-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2007(06):205-208.
[6]  Biroon M K ,  Zahedifar M ,  Sadeghi E , et al. Preparation, kinetic analysis and thermoluminescent dosimetry features of highly sensitive SrF2:Dy phosphor[J]. Radiation Physics and Chemistry, 2019, 159:1-5.
[7]  Hesaraki S ,  Karimi M ,  Nezafati N . The synergistic effects of SrF2 nanoparticles, YSZ nanoparticles, and poly-ε-l-lysin on physicomechanical, ion release, and antibacterial-cellular behavior of the flowable dental composites – ScienceDirect[J]. Materials Science and Engineering: C, 109.
[8]  Ji G ,  Hong G J ,  Bae C H , et al. Infrared-laser precipitation of Dy3+-Yb3+ codoped SrF2 nanocrystals in glass and upconversion luminescence[J]. Applied Surface Science, 2019, 478:412-416.
[9]  Yagoub M ,  Swart H C ,  Kroon R E , et al. Low temperature photoluminescence study of Ce 3+ and Eu 2+ ions doped SrF 2 nanocrystals[J]. Physica B Condensed Matter, 2017:S0921452617304891.
[10]  Zhou Z ,  Li W ,  J  Song, et al. Application of Judd-Ofelt theory in analyzing Nd3+ doped SrF2 and CaF2 transparent ceramics[J]. Journal of the European Ceramic Society, 2019.
[11] Scintillation Properties of SrF 2 Translucent Ceramics and Crystal[J]. Optik, 2018:S0030402618305758.
[12]  Chuklina N ,  Mysovsky A . Theoretical study of self-trapped hole diffusion in CaF2, SrF2, BaF2 crystals[J]. Radiation Measurements, 2019, 128:106135-.
[13] [ Farha Khatun,  Thakur P ,  Hoque N A , et al. In situ synthesized SrF2/polyvinylidene fluoride nanocomposite film based photo-power cell with imperious performance and stability[J]. Electrochimica Acta, 2018.
[14]  Hosoya H ,  Arita M ,  Hamada K , et al. Epitaxial growth of Fe nanodots on SrF 2/Si (111)[J]. Materials Science and Engineering C, 2006, 26(5):1146-1150.
[15]  Yanagida T ,  Fujimoto Y ,  Fukuda K , et al. Ce-doped LiF-SrF2 eutectic scintillators for thermal neutron detection produced at different solidification rates[J]. Optical Materials, 2013, 35(7):1449-1454.
[16]  Ye J ,  Qin W ,  Zhang J . Preparation and optical properties of SrF2 : Eu3+ nanospheres[J]. Journal of Fluorine Chemistry, 2008, 129(6):515-518.
[17]  Zhou Z ,  Li W ,  Song J , et al. Synthesis and characterization of Nd 3+ doped SrF 2 nanoparticles prepared by precipitation method[J]. Ceramics International, 2017, 44(4).
[18]  Thomas M E . Strontium Fluoride (SrF2)[J]. Handbook of Optical Constants of Solids, 1997.
[19] Lewandowski, Tomasz, Walas, et al. Eu3+ doped tellurite glass ceramics containing SrF2 nanocrystals: Preparation, structure and luminescence properties[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2017.
[20]  Jia S ,  Li C ,  Zhao Z , et al. Er 3+ -doped ZnF 2 -BaF 2 -SrF 2 -YF 3 fluoride glasses for 2.7 μm laser applications[J]. Materials Letters, 2018, 227.
[21]  Yagoub M ,  Swart H C ,  Dhlamini M S , et al. Near infrared quantum cutting of Na+ and Eu2+-Yb3+ couple activated SrF2 crystal[J]. Optical Materials, 2016, 60:521-525.
[22]  A C R K ,  B C S D V ,  A S K , et al. Enhanced visible emissions of Pr 3+ -doped oxyfluoride transparent glass-ceramics containing SrF 2 nanocrystals[J]. Ceramics International, 2018, 44( 2):1737-1743.
[23]  Demkiv T M ,  Halyatkin O O ,  Vistovskyy V V , et al. X-ray excited luminescence of polystyrene composites loaded with SrF_2 nanoparticles[J]. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 847(mar.1):47-51.
[24] Deng, Dong, YY, et al. Revealing the influences of cellulose on cellulose/SrF2 nanocomposites synthesized by microwave-assisted method[J]. IND CROP PROD, 2016, 2016,85(-):258-265.
[25]  Balabhadra S ,  Reid M F ,  V  Golovko, et al. Absorption Spectra, Defect Site Distribution and Upconversion Excitation Spectra of CaF$_2$/SrF$_2$/BaF$_2$:Yb$^{3+}$:Er$^{3+}$ Nanoparticles[J].  2019.
[26]  Im A ,  Yw A ,  Ez B . The effect of Gd3+ doping on luminescence properties of (Gd, Ce): SrF2 nanopowders and transparent ceramics – ScienceDirect[J]. Journal of Luminescence, 224.
[27]  Przybylska D ,  Grzyb T . Synthesis and up-conversion of core/shell SrF 2 :Yb 3+, Er 3+ @SrF 2 :Yb 3+, Nd 3+ nanoparticles under 808, 975, and 1532nm excitation wavelengths[J]. Journal of Alloys and Compounds, 831.
[28]  Gulina L B ,  Sch?Fer M ,  Privalov A F , et al. Synthesis and NMR investigation of 2D nanocrystals of the LaF3 doped by SrF2[J]. Journal of Fluorine Chemistry, 2016, 188:185-190.
[29]  Yagoub M ,  Swart H C ,  Coetsee E . Concentration quenching, surface and spectral analyses of SrF2:Pr3+ prepared by different synthesis techniques[J]. Optical Materials, 2015, 42:204-209.
[30]  Enhanced electrochemical performance of SrF 2 -modified Li 4 Ti 5 O 12 composite anode materials for lithium-ion batteries

Related Product

CaF2-Crystal-Halide-Crylink
CaF2
BaF2-Crystal-Halide-Crylink
BaF2
MgF2-Crystal-Halide-Crylink
MgF2

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685/+86-021-69913696
Address: NO.599 Huiwang East Road, Jiading District, Shanghai
                 NO.22 Jingang Road, Lishui District, Nanjing city
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.