• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / Cr:LiSAF

Cr:LiSAF

Cr3+:LiSAF gain medium possesses broad emission bands in the near infrared that allow widely tunable laser operation and generation of ~10 fs light pulses via mode-locking technique. Cr:LiSAF crystals can be grown with a very low loss level (0,2%/cm) and it enables to construct high-Q-cavities, resulting in lasing thresholds as low as 2 mW and slope efficiencies above 50%. Moreover, nonlinear refractive index of Cr:LiSAF is about four times lower than Ti:sapphire, which reduces unwanted nonlinearities in ultrashort pulse generation and amplification. It’s excellent laser material with high energy storage and high slope efficiency. It’s also ideal working materials under conditions of ultra short pulse and ultra high power. Currently, Cr:LiSAF related products such as flashlight pumping and semi-conductor pumping laser have been widely used.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Orientationa-cut
Parallelism<10〞
Perpendicularity10ˊ
Chamfer0.1mm@45°
Surface Quality10-5 S-D
Wavefront Distortionλ/8 @632.8 nm
Surface Flatnessλ/10 @632.8 nm
Clear Aperture>90%
Face Diameter Tolerance+0/-0.1mm
Length Tolerance±0.1mm
CoatingsR<1%@670nm+R<0.5%@700~1100nm on both faces
Laser Induced Damage Threshold>10J/cm2@1064nm, 10ns
Physical and Chemical Properties
Crystal StructureTrigonal
Space GroupP31C
Lattice Constantsa=5.08, c=10.21 Å
Density (g/cm3)3.45
Melting Point766°C
Mohs Hardness4
Modulus of Elasticity(GPa)109
Specific Heat(J/gK@298K)0.842
Thermal Conductivity(W·m-1·K-1)4.6(∥a), 5.1(∥c)
Thermal Expansion(10-6K-1)2.2(∥a), 3.6(∥c)
Typical Doping Level0.8~1.5@.%
Optical Characteristics
Absorption Peak Wavelength(nm) 670
Absorption Cross-section at Peak(10-20cm2) 5.5
Absorption Bandwidth at Peak Wavelength~100nm
dn/dT (10-6K-1)-4.2(no), -4.6(ne)
Refractive Indexn=1.41
Laser Wavelength(nm)830(780-920)
Lifetime of 4T2 Energy Level(μs)67
Emission Cross-Section(10-20cm2)5
Scatter Losses(%/cm)<0.2
Index of Refraction
λ(nm)ncna
8461.4071.405
6701.4091.407
4231.4131.412
2901.421.42
2661.4221.424
Spectrum

Feature
Application
Literature
Feature
  • Broad absorption and emission bands
  • Nonlinear refractive index is about four times lower than Ti:sapphire
  • Custom crystals available upon request
Application
  • Femtosecond lasers and CPA laser systems
  • Flashlight pumping and semi-conductor pumping laser
Literature
[1]  Wang J ,  Qi L ,  Zheng Q , et al. 430nm DPSS blue laser generated by sum-frequency mixing[J]. Optik, 2018, 170:233-236.
[2]  Dowling K ,  Hyde S ,  Dainty J C , et al. 2-D fluorescence lifetime imaging using a time-gated image intensifier[J]. Optics Communications, 1997, 135(1-3):27-31.
[3]  Dai J ,  Zhang W ,  Zhang L , et al. A diode-pumped, self-starting, all-solid-state self-mode-locked Cr:LiSGAF laser[J]. Optics & Laser Technology, 2001, 33(2):71-73.
[4]  Mondal N N . A novel detection system for laser cooling of ortho-positronium[J]. Nuclear Inst & Methods in Physics Research A, 2002, 495(2):161-169.
[5]  Knappe R ,  Bitz G ,  Boller K J , et al. Compact single-frequency diode-pumped Cr:LiSAF lasers[J]. Optics Communications, 1997, 143(1-3):42-46.
[6]  Demirbas U . Cr: Colquiriite Lasers: Current Status and Challenges for Further Progress.  2018.
[7]  Robertson A ,  Knappe R ,  Wallenstein R . Diode-pumped broadly tunable (809–910 nm) femtosecond Cr:LiSAF laser[J]. Optics Communications, 1998, 147(4-6):294-298.
[8]  Eichenholz J M ,  Richardson M ,  Mizell G . Diode pumped, frequency doubled LiSAF microlaser[J]. Optics Communications, 1998, 153(4-6):263-266.
[9] G.R Morrison and M Ebrahimzadeh and  C.F  Rae and M.H Dunn. Diode-pumped, Q-switched, 1.321 μm Nd:YLF laser and its frequency doubling[J]. Optics Communications, 1995.
[10]  Sutherland J M ,  Ruan S ,  Mellish R , et al. Diode-pumped, single-frequency, Cr:LiSAF coupled-cavity microchip laser[J]. Optics Communications, 1995, 113( 4–6):458-462.
[11]  Parsons-Karavassilis D ,  Gu Y ,  Ansari Z , et al. Diode-pumped spatially dispersed broadband Cr:LiSGAF and Cr:LiSAF c.w. laser sources applied to short-coherence photorefractive holography[J]. Optics Communications, 2000, 181(4-6):361-367.
[12]  Isemann A ,  Weels P ,  Fallnich C . Directly diode-pumped Colquiriite regenerative amplifiers[J]. Optics Communications, 2006, 260(1):211-222.
[13]  Kunpeng L ,  Li Y ,  Yanlong S , et al. Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities[J]. Optics & Laser Technology, 2015, 74:1-5.
[14]  BC  Weber,  Hirth A . Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser[J]. Optics Communications, 1996, 128(1-3):158–165.
[15] Sadao, Uemura, and, et al. Femtosecond Cr:LiSAF laser pumped by a single diode laser[J]. Optics Communications, 1997, 138(4-6):330-332.
[16]  Agnesi A ,  Pirzio F ,  Ugolotti E , et al. Femtosecond single-mode diode-pumped Cr:LiSAF laser mode-locked with single-walled carbon nanotubes[J]. Optics Communications, 2012, 285(5):742-745.
[17]  Kunpeng L ,  Yanlong S ,  Li Y , et al. High-efficiency tunable dual-wavelength Cr:LiSAF laser with external grating feedback[J]. Optics Communications, 2017, 405:233-237.
[18]  Fromzel V A ,  Prasad C R . Influence of a small inhomogeneous broadening of Cr^3^+:LiSrAlF[J].
[19]  Demirbas U ,  Uecker R ,  Klimm D , et al. Intra-cavity frequency-doubled Cr:LiCAF laser with 265 mW continuous-wave blue (395–405 nm) output[J]. Optics Communications, 2014, 320:38-42.
[20]  Barbosa E A ,  Vieira N D . Kerr-lens mode locking resonator calculation with two nonlinear elements[J]. Optics Communications, 2001, 188(1-4):205-211.
[21]  Samtleben T A ,  Hulliger J . LiCaAlF6 and LiSrAlF6: Tunable solid state laser host materials[J]. Optics and Lasers in Engineering, 2005, 43(3-5):251-262.
[22]  Uemura S ,  Miyazaki K . Operation of a femtosecond Cr:LiSAF solitary laser near zero group-delay dispersion[J]. Optics Communications, 1997, 133(1-6):201-204.
[23]  Munin E ,  Villaverde A B ,  Bass M . Optical absorption, absorption saturation and a useful figure of merit for chromium doped glasses[J]. Journal of Physics & Chemistry of Solids, 1997, 58(1):51-57.
[24]  DA  Biasetti,  Liscia E ,  Torchia G A . Optical waveguides fabricated in Cr:LiSAF by femtosecond laser micromachining[J]. Optical Materials, 2017, 73:25-32.
[25]  Passilly N ,  Haouas E , V Ménard, et al. Population lensing effect in Cr:LiSAF probed by Z-scan technique[J]. Optics Communications, 2006, 260(2):703-707.
[26]  Weber B C ,  Hirth A . Presentation of a new and simple technique of Q-switching with a LiSrAlF 6:Cr 3+ oscillator[J]. Optics Communications, 1998, 149(4-6):301-306.
[27]  Robertson A ,  Ernst U ,  Knappe R , et al. Prismless diode-pumped mode-locked femtosecond Cr:LiSAF laser[J]. Optics Communications, 1999, 163(1-3):38-43.
[28]  Agate B ,  Stormont B ,  Kemp A J , et al. Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers[J]. Optics Communications, 2002, 205(1-3):207-213.
[29]  Ruiz M ,  Barbosa E A ,  Maldonado E P , et al. Zone melting growth of LiSrAlF6:Cr crystals for diode laser pumping[J]. Journal of Crystal Growth, 2002, 241(1-2):177-182.
[30]  Galzerano G ,  Laporta P . Frequency-stabilized seed laser system for dial applications around 0.94 μm[J]. Optics & Lasers in Engineering, 2006, 44(7):677-686.

Related Product

LiSAF-Crystal-Halide-Crylink
LiSAF
Ce-LiSAF-Crystal-Halide-Crylink
Ce:LiSAF
Cr-LiCAF-Crystal-Halide-Crylink
Cr:LiCAF

Reader Interactions

Comments

  1. Eberhard Riedle says

    December 17, 2020 at 06:14

    I’m looking for an undoped LiSAF crystal,

    – diameter 5 mm, thickness 5 mm

    or

    – diameter 1/”, thickness 5 mm

    or

    diameter 1″, thickness 5 mm

    all with optically polished faces.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685/+86-021-69913696
Address: NO.599 Huiwang East Road, Jiading District, Shanghai
                 NO.22 Jingang Road, Lishui District, Nanjing city
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.