• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / LiSAF

LiSAF

Lithium strontium hexafluoroaluminate(LiSAF) crystals are widely used as vacuum ultraviolet(VUV) and ultraviolet(UV) laser host media. It has excellent transmission characteristics down to the vacuum ultraviolet (VUV) region. The transmission edge of LiSAF was measured experimentally to be 116nm. LiSAF(LiSrAIF6) are excellent laser materials with high energy storage and high slope efficiency, also ideal working material under conditions of ultra short pulse and ultra high power. Like Ti:sapphire, LiSAF exhibits a broad bandwidth, tunable from 760 to 1000 nm. Unlike Ti:sapphire, however, it has a relatively long upper-state lifetime (60µs) and, therefore, can be flashlamp-pumped. This advantage, coupled with the fact that LiSAF has a low nonlinear refractive index and low thermal lensing, make it an ideal candidate for high-power short pulse laser systems. 

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Orientation Tolerance5ˊ
Parallelism<10〞
Perpendicularity5ˊ
Chamfer0.1mm@45°
Surface Quality10/5 or better
Wavefront Distortionλ/8 @632.8 nm
Surface Flatnessλ/10 @632.8 nm
Clear Aperture>95%
Diameter Tolerance+0/-0.05mm
Length Tolerance±0.1mm
CoatingsAs per requirement
Damage Thresholdover 15J/cm2 TEM00, 10ns, 10Hz
Dopant Concentration Tolerance0.10%
Physical and Chemical Properties
LatticeHexagonaL
Space GroupP31C
Lattice Constantsa=5.08, c=10.214Å
Density (g/cm3)3.45
Melting Point750°C
Thermal Conductivity(W·m-1·K-1)3.09(∥a), 4.58(∥c)
Thermal Expansion(10-6·K-1)-10(∥a), 18.8(∥c)
Specific Heat(J·g-1·K-1)0.842
Fracture Toughness(MPa·m1/2)0.4
Band Gap(eV)@LDA7.92(indirect)
Young’s Modulus(GPa)86.33(∥a), 83.45(∥c)
Bulk Modulus(GPa)83.75
Dielectric Constant1.26
Optical characteristics
Absorption Edge 116nm
Refractive Indexno=1.3944, ne=1.3988@632,8nm
Thermal-optical Coefficient(10-6/°C)-4.5(no), -9.1(ne)
Index of Refraction
Wavelength(nm)none
632.81.39441.3988
546.11.39721.4011
435.81.40141.4052
253.71.4221.4276
Spectrum

Feature
Application
Literature
Feature
  • Large band gaps and low phonon energies
  • Optical transmission and low thermal lensing distortion
  • Absorption edge is 116nm
  • Small non-linear refractive indices
  • Transparency, tolerance to laser-induced damage
Application
  • Lase host media
  • Lens in VUV photolithography
Literature
[1]  Vazquez R M ,  Santos M T ,  Lopez F J . Influence of neutral environment in the growth of Cr-doped LiCAF/LiSAF crystals: X-ray powder diffraction and EPR analysis[J]. Journal of Crystal Growth, 2002, s 237–239:894-898.
[2]  Vasa N J ,  Parhat H ,  Okada T , et al. Performance of an optical fiber butt-coupled Cr3+:LiSrAlF6 laser[J]. Optics Communications, 1998, 147(1-3):196-202.
[3]  Eichenholz J M ,  Richardson M ,  Mizell G . Diode pumped, frequency doubled LiSAF microlaser[J]. Optics Communications, 1998, 153(4-6):263-266.
[4]  Luong M V ,  Empizo M ,  Cadatal-Raduban M , et al. First-principles calculations of electronic and optical properties of LiCaAlF6 and LiSrAlF6 crystals as VUV to UV solid-state laser materials[J]. Optical Materials, 2016, 65.
[5]  Samtleben T A ,  Hulliger J . LiCaAlF6 and LiSrAlF6: Tunable solid state laser host materials[J]. Optics and Lasers in Engineering, 2005, 43(3-5):251-262.
[6]  Wakahara S ,  Yanagida T ,  Fujimoto Y , et al. Evaluation of Ce3+ and alkali metal ions Co-doped LiSrAlF6 crystalline scintillators[J]. Radiation Measurements, 2013, 56(Complete):111-115.
[7]  Suzuki S ,  Yokota Y ,  Yamaji A , et al. Effects of Eu concentration control on crystal growth and scintillation properties for Eu:LiSrAlF6 crystals[J]. Optical Materials, 2014, 36(12):1959-1962.
[8]  Yamaji A ,  Yanagida T ,  Kawaguchi N , et al. Crystal growth and scintillation properties of Ce and Eu doped LiSrAlF_6[J]. Nuclear Instruments & Methods in Physics Research, 2011, 659(1):p.368-372.
[9]  Yanagida T ,  Kawaguchi N ,  Fujimoto Y , et al. Ce and Eu-doped LiSrAlF6 scintillators for neutron detectors[J]. Radiation Measurements, 2011, 46(12):1708-1711.
[10]  True M ,  Kirm M ,  Negodine E , et al. VUV spectroscopy of Tm and Mn doped LiSrAlF.  2004.
[11]  Castillo V K ,  Quarles G J . Progress in the crystal growth of Ce : colquiriites[J]. Journal of Crystal Growth, 1997, 174(1):337–341.
[12]  Castillo V K ,  Chang R . Material and laser characterizations of intermediate compositions of Ce:LiSrxCa1-xAlF6[J]. Journal of Crystal Growth, 2001, 225(2-4):445-448.
[13]  Shimamura K ,  Baldochi S L ,  Na M , et al. Growth of Ce-doped LiCaAlF6 and LiSrAlF6 single crystals by the Czochralski technique under CF4 atmosphere[J]. Journal of Crystal Growth, 2000, 211(1/4):302-307.
[14]  Dk A ,  Gla B ,  Pr A . Growth of Cr:LiCaAlF 6 and Cr:LiSrAlF 6 by the Czochralski method[J]. Journal of Crystal Growth, 2000, 210( 4):683-693.
[15]  Yamaji A ,  Yokota Y ,  Yanagida T , et al. Crystal growth and dopant segregation of Ce:LiSrAlF_6 and Eu:LiSrAlF_6 crystals with high dopant concentrations[J]. Journal of Crystal Growth, 2012, 352(1):p.106-109.
[16]  Bayramian A J ,  Marshall C D ,  Wu J H , et al. Ce:LiSrAlF6 Laser Performance with Antisolarant Pump Beam[J]. Journal of Luminescence, 1996, 69(2):85-94.
[17]  M. H . Chemical stability and Ce doping of LiMgAlF6 neutron scintillator[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2015.
[18]  Abdulsabirov R Y ,  Dubinskii M A ,  Korableva S L , et al. Crystal growth, EPR and site-selective laser spectroscopy of Gd 3+-activated LiCaALF 6 single crystals[J]. Journal of Luminescence, 2001, 94(none):113-117.
[19] Jomar B. Amaral and Mario E.G. Valerio and Marcos A. Couto dos Santos and Robert A. Jackson. Defect simulation and crystal field studies of Ln3+:LiCaAlF6 and LiSrAlF6[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004.
[20]  Sutherland J M ,  Ruan S ,  Mellish R , et al. Diode-pumped, single-frequency, Cr:LiSAF coupled-cavity microchip laser[J]. Optics Communications, 1995, 113( 4–6):458-462.
[21]  Yokota Y ,  Tanaka C ,  Kurosawa S , et al. Effects of Ca/Sr Ratio Control on Optical and Scintillation Properties of Eu-doped Li(Ca,Sr)AlF 6 Single Crystals[J]. Journal of Crystal Growth, 2018, 490:71-76.
[22]  Shiran N ,  Gektin A ,  Neicheva S , et al. Energy storage in Ce-doped LiCaAlF 6 and LiSrAlF 6 crystals[J]. Radiation Measurements, 2004, 38(4-6):459-462.
[23]  Shiran N ,  Gektin A ,  Neicheva S , et al. Energy transfer in pure and Ce-doped LiCaAlF6 and LiSrAlF6 crystals[J]. Nuclear Inst & Methods in Physics Research A, 2005, 537(1/2):266-270.
[24]  Nicholls J . Laser performance and spectroscopic properties of Nd3+-doped LiKYF5 and LiKGdF5 crystals[J]. Optics Communications, 1997, 137(s 4–6):281–284.
[25]  Backer A D ,  Garreau J C ,  Razdobreev I M , et al. Laser performance of new crystal Cr3+:(CeGd)Sc3(BO3)4[J]. Optics Communications, 2003, 222(1):351-354.
[26]  Kozeki T ,  Suzuki Y ,  Sakai M . Observation of new excitation channel of cerium ion through highly vacuum ultraviolet transparent LiCAF host crystal[J]. Journal of Crystal Growth, 2001, 229:501-504.
[27]  Passilly N ,  Haouas E , V Ménard, et al. Population lensing effect in Cr:LiSAF probed by Z-scan technique[J]. Optics Communications, 2006, 260(2):703-707.
[28] Satoru Kuze and Douglas du Boulay and Nobuo Ishizawa and Nobuhiro Kodama and Mitsuo Yamaga and Brian Henderson. Structures of LiCaAlF6 and LiSrAlF6 at 120 and 300 K by synchrotron X-ray single-crystal diffraction[J]. Journal of Solid State Chemistry, 2004.
[29]  Ruiz M ,  Barbosa E A ,  Maldonado E P , et al. Zone melting growth of LiSrAlF6:Cr crystals for diode laser pumping[J]. Journal of Crystal Growth, 2002, 241(1-2):177-182.
[30]  Long X ,  Lin Z ,  Hu Z , et al. Optical study of Cr3+-doped LaSc3(BO3)4 crystal[J]. Journal of Alloys & Compounds, 2002, 347(s 1–2):52-55.

Related Product

Ce-LiSAF-Crystal-Halide-Crylink
Ce:LiSAF
Cr-LiSAF-Crystal-Halide-Crylink
Cr:LiSAF
LiCAF-Crystal-Halide-Crylink
LiCAF

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685/+86-021-69913696
Address: NO.599 Huiwang East Road, Jiading District, Shanghai
                 NO.22 Jingang Road, Lishui District, Nanjing city
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.