• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / Tm:YLF

Tm:YLF

Tm:YLF is the important middle infrared laser crystal. Because Tm:YLF is negative uniaxial crystal, whose thermal refractive index coefficient is negative, some thermal distortion may be counteracted and high-quality light can be output. Conveniently pumped at 792nm, 1.9μm linearly polarized beam is output in a axis, and non-linearly polarized beam is output in c axis. The YLF crystals has low non-linear refraction index value and thermo optical constants, which makes theses crystals applicable in research, development, education, production, photonics, optic, laser technology and telecommunications.

Tm3+:YLF lasers are ideal to be used as pump source for Ho3+:YAG lasers.

Yttrium lithium fluoride (YLF) is a particularly attractive choice as the host medium for thulium, when it is used as pump source for a 2.1 μm Ho:YAG laser. This is due to the good overlap of the emission peaks with the absorption spectrum of Ho:YAG. YLF is a naturally birefringent material, capable of producing linearly polarized output with virtually no depolarization loss.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Concentration Tolerance (atm%)2-4 at.%
Lattice Constants4~5
Orientationa-cut, other orientations also available
Parallelism<10”
Perpendicularity<5”
Surface Quality10-5 scratch & dig
Wavefront Distortionλ/8 @ 633nm
Surface Flatnessλ/10 @ 633nm
Clear Aperture95%
Length Tolerance±0.1 mm
Face Dimensions Tolerance+0/-0,1 mm
Protective Chamfers<0,1 mm at 45˚
Damage Thresholdover 15J/cm2 TEM00, 10ns, 10Hz
Physical and Chemical Properties
Crystal StructureTetragonal
Lattice Constantsa=5.16Å; c=10.85Å
Density3.99 g/cm³
Melting Point819℃
Thermal Conductivity6 Wm-1K-1
Thermal Optical Coefficient(dn/dT)π = 4.3 x 10-6 x °K-1; σ = 2.0 x 10-6 x °K-1
Thermal Expansion /(10-6·K-1@25°C )10.1×10-6 (//c) K-1,  14.3×10-6((//a)  K-1
Hardness (Mohs)5
Shear Modulus /Gpa85
Specific Heat0.79 J/gK
Poisson Ratio0.3
Optical and Spectral Properties
Laser Transition3F4→3H6
Laser Wavelengthπ:1880 nm; σ:1908 nm
Absorption Cross-section at Peak0.55×10-20 cm2
Absorption Bandwidth at Peak Wavelength16 nm
Absorption Peak Wavelength792 nm
Lifetime of 3F4 Thulium Energy Level16 ms
Quantum Efficiency2
Non-linear Index n20.6 x 10-13
Optical Quality< 0.3 x 10-5
Refractive Index @1064 nmno=1.448, ne=1.470
Laser Induced Damage Threshold>10 J/cm2@1900 nm, 10 ns
CoatingsR<0,5% @792 nm + R<0,15% @1800-1960 nm on both sides; custom coatings also available
Absorption and Emission Spectrum
Feature
Application
Literature
Feature
  • Linearly polarized output beam
  • Little heat effect while laser
  • Effective cross relaxing of Tm ions
  • Relatively high efficiency with LD pumping
  • Low nonlinear refractive index
  • Low thermo-optical constant
  • Low polarization loss
  • Long upper energy level fluorescence lifetime
  • Small up-conversion effect
  • No absorption loss of sensitized ions
Application
  • Medical diagnosis and treatment
  • Laser radar
  • Laser ranging
  • Electro-optical countermeasure
  • Laser remote sensing
  • Laser imaging
  • Optical signal processing
  • Material processing
  • Pump source for Ho3+:YAG lasers
Literature
[1] Jing, Wu, Lin, et al. Tunable single-longitudinal-mode operation of a sandwich-type YAG/Ho:YAG/YAG ceramic laser[J]. Infrared Physics & Technology, 2016.
[2]  Cao L ,  Tang W ,  Zhao S , et al. 2 μm Passively Q-switched all-solid-state laser based on WSe2 saturable absorber[J]. Optics & Laser Technology, 2019, 113:72-76.
[3]  Fan Z ,  Wen Y ,  Shi X , et al. LD double-end pumped dual-rod acousto-optic Q-switched Tm:LuAG laser[J]. Infrared Physics & Technology, 2019, 102:103022.
[4]  Guo L ,  Zhao S ,  Li T , et al. In-band pumped, high-efficiency LGS electro-optically Q-switched 2118 nm Ho:YAP laser with low driving voltage[J]. Optics & Laser Technology, 2020, 126.
[5]  Wen Y ,  Li T Y ,  He Q F , et al. Laser-diode dual-end-pumped electro-optic Q-switched slab Tm:YAP laser[J]. Infrared Physics & Technology, 2020, 105(1):103215.
[6]  Schellhorn M ,  Eichhorn M ,  Kieleck C , et al. High repetition rate mid-infrared laser source[J]. Comptes Rendus Physique, 2007, 8(10):1151-1161.
[7]  Ding Y ,  Han L ,  Yao B Q , et al. High power Tm:YLF bulk laser wavelength-stabilized by two F-P etalons[J]. Optik – International Journal for Light and Electron Optics, 2015, 126(9-10):990-992.
[8] W.X. Zhang and J. Zhou and W.B. Liu and J. Li and L. Wang and B.X. Jiang and Y.B. Pan and X.J. Cheng and J.Q. Xu. Fabrication, properties and laser performance of Ho:YAG transparent ceramic[J]. Journal of Alloys and Compounds, 2010.
[9]  Lia L ,  Yanga X ,  Zhoua L , et al. High beam quality passively Q-switched operation of a slab Tm:YLF laser with a MoS2 saturable absorber mirror[J]. Optics & Laser Technology, 2019, 112:39-42.
[10] Y, Ding,   D . X , et al. High power Tm:YLF laser operating at 1.94 μm[J]. Optik International Journal for Light & Electron Optics, 2015.
[11]  Yang X T ,  Mu Y L ,  Zhao N B . Ho:SSO solid-state saturable-absorber Q switch for pulsed Ho:YAG laser resonantly pumped by a Tm:YLF laser[J]. Optics & Laser Technology, 2018, 107:398-401.
[12]  Zhang B ,  Li L ,  He C , et al. Compact self-Q-switched Tm:YLF laser at 1.91 μm[J]. Optics & Laser Technology, 2018, 100.
[13]  Yuan J ,  Chen Y ,  Duan X , et al. CdSe optical parametric oscillator operating at 12.07m with 170mW output[J]. Optics & Laser Technology, 2017, 92:1-4.
[14]  Dai Y ,  Li Y ,  Zou X , et al. Compact passively Q-switched Tm:YLF laser with a polycrystalline Cr:ZnS saturable absorber[J]. Optics & Laser Technology, 2014, 57:202-205.
[15]  Zhang X ,  Chu H ,  Li Y , et al. Diameter-selected single-walled carbon nanotubes for the passive Q-switching operation at 2 μm[J]. Optical Materials, 2020, 100(Feb.):109627.1-109627.4.
[16]  Zhang Y ,  Cai Y ,  Xu B , et al. Extending the wavelength tunability from 2.01 to 2.1 μm and simultaneous dual-wavelength operation at 2.05 and 2.3 μm in diode-pumped Tm:YLF lasers[J]. Journal of Luminescence, 2019, 218.
[17]  Duan X M ,  Ding Y ,  Dai T Y , et al. A linewidth-narrowed Tm:YLF laser using by two etalons[J]. Optik – International Journal for Light and Electron Optics, 2015, 126(19):2108-2109.
[18]  Pan H ,  Huang W ,  Chu H , et al. Bismuthene quantum dots based optical modulator for MIR lasers at 2 μm[J]. Optical Materials, 2020, 102.
[19]  Cui Z ,  Yao B Q ,  Duan X M , et al. A graphene saturable absorber for a Tm:YLF pumped passively Q-switched Ho:LuAG laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(5):3082-3085.
[20]  Wang R ,  Li Y ,  Zhang L , et al. Passively Q-switched mode-locked Nd:GdTaO4 laser by rhenium diselenide saturable absorber operated at 1066 nm[J]. Infrared Physics & Technology, 2020, 108:103378.
[21]  Zhang X ,  Ni K ,  Huang J , et al. Resonantly pumped mid-infrared Ho:YAG/BaWO4 intracavity Raman laser at 2640 nm[J]. Optics & Laser Technology, 2020, 121:105813.
[22] Wang, Shiqiang, Huang,等. Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers.
[23]  Zhang W ,  Bai H L ,  Guo L P , et al. Self-Q-switched operation in Tm:YAG crystal and passively Q-switched operation using GaSe saturable absorber[J]. Infrared Physics & Technology, 2020, 105:103208.
[24]  Razumova I ,  Tkachuk A ,  Nikitichev A , et al. Spectral-luminescent properties of Tm:YLF crystal[J]. JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 225(1-2):129-132.
[25]  Yuan J H ,  Yao B Q ,  Duan X M , et al. Resonantly pumped high power acousto-optical Q-switched Ho:YAG ceramic laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(4):1595-1598.
[26] Low-Cost Multi-Mode Diode Pumped Tm:YLF Laser: Multi-Color & Q-Switching Operations[J]. Optics Communications, 2019, 451:55-61.
[27] Yue, Chen, Xin-Yu, et al. A compact high efficient Tm:YLF laser dual-end-pumped by an equidirectional-polarizing fiber coupled laser diode at room temperature[J]. Optik: Zeitschrift fur Licht- und Elektronenoptik: = Journal for Light-and Electronoptic, 2018, 158:1553-1557.
[28]  Yokozawa T ,  Izawa J ,  Hara H . Mode control of a Tm:YLF microchip laser by a multiple resonator[J]. Optics Communications, 1998, 145( 1–6):98-100.
[29]  Duan X M ,  Shen Y J ,  Yao B Q , et al. A 106W Q-switched Ho:YAG laser with single crystal[J]. Optik – International Journal for Light and Electron Optics, 2018, 169:224-227.
[30]  Hu H ,  Huang H ,  Huang J , et al. Tm:YVO4 laser intra-cavity pumped 2.1μm Ho laser – ScienceDirect[J]. Optics Communications, 472.

Related Product

Ho-YLF-Crystal-Halide-Crylink
Ho:YLF
Er-YLF-Crystal-Halide-Crylink
Er:YLF
Pr-YLF-Crystal-Halide-Crylink
Pr:YLF

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685/+86-021-69913696
Address: NO.599 Huiwang East Road, Jiading District, Shanghai
                 NO.22 Jingang Road, Lishui District, Nanjing city
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.