• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / Ho:YLF

Ho:YLF

Ho:YLF is a very attractive laser material, because the lifetime of the upper laser level is much longer ( ~ 14 ms) than in Ho:YAG and the emission cross sections are higher. Additionally the thermal lens in Ho:YLF is much weaker, which helps to generate diffraction limited beams even under intense end-pumping.

The primary advantage of directly pumping the Ho 5I7 is that it does not have to depend on energy transfer, which lends itself to various radiative and non-radiative losses. Up-conversion losses that have deleterious effect in high-energy Q-switched lasers are eliminated. In the near future experiments with different Ho:YLF crystals are planned to reduce the laser threshold and increase the maximum output power.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Orientationa-cut
Clear aperture>90%
Face dimensions tolerance+0/-0,1 mm
Length tolerance±0,1 mm
Parallelism error<10 arcsec
Perpendicularity error<10 arcmin
Protective chamfers<0,1 mm at 45˚
Surface quality10-5 S-D
Surface flatness<λ/10@632,8 nm
CoatingsR<0,35%@1900-2100 nm on both faces
LIDT>10 J/cm2@2060 nm, 10 ns
MountUnmounted
Physical and Chemical Properties
Crystal structuretetragonal
Density3.95 g/cm3
Mohs hardness5
Thermal conductivity6 Wm-1K-1
dn/dT-4.6×10-6 (||c) K-1, -6.6×10-6 (||a) K-1
Thermal expansion coefficient10.1×10-6 (||c) K-1, 14.3×10-6 ((||a) K-1
Typical doping level0.5-1%
Optical and Spectral Properties
Absorption peak wavelength1940 nm
Absorption cross-section at peak1.2×10-20 cm2
Absorption bandwidth at peak wavelength~18 nm
Laser wavelength2060 nm
Lifetime of 5I7 energy level10 ms
Emission cross-section1.8×10-20 cm2
Refractive index @1064 nmno=1.448, ne=1.470
Spectrum
Feature
Application
Literature
Feature
  • Long upper laser level lifetime ~ 15 ms
  • Higher emission cross-section
  • Naturally birefringent material
  • Low dn/dT –> weak thermal lensing
  • Highest (to the best of our knowledge) CW output of 21 W for 2-μm Ho:YLF laser
  • Efficient Q-switched operation (up to 37 mJ per pulse)
Application
  • Remote sensing
  • Pollutant Control
  • Military defense
Literature
[1] Jacek, Kwiatkowski, Jan, et al. An efficient continuous-wave and Q-switched single-pass two-stage Ho:YLF MOPA system[J]. Optics & Laser Technology, 2015.
[2]  Bourdet G L ,  Lescroart G ,  Muller R . Spectral characteristics of 2 μm microchip Tm:YVO 4 and Tm,Ho:YLF lasers[J]. Optics Communications, 1998, 150(1-6):141-146.
[3]  Nagasawa C ,  Sakaizawa D ,  Hara H , et al. Lasing characteristics of a CW Tm,Ho:YLF double cavity microchip laser[J]. Optics Communications, 2004, 234(1-6):301-304.
[4]  Zhang X ,  Bao X ,  Li L , et al. Laser diode end-pumped passively Q-switched Tm,Ho:YLF laser with Cr:ZnS as a saturable absorber[J]. Optics Communications, 2012, 285(8):2122–2127.
[5]  Wang R ,  Huang X ,  Wang Y , et al. Intense 3.9 μm emission of Ho3+ doped YAlO3 single crystal[J]. Infrared Physics & Technology, 2018:S1350449517307545.
[6]  Vieira N D ,  Ranieri I M ,  Tarelho L , et al. Laser development of rare-earth doped crystals[J]. Journal of Alloys and Compounds, 2002, 344(1-2):231-239.
[7]  Yang X T ,  Mu Y L ,  Zhao N B . Ho:SSO solid-state saturable-absorber Q switch for pulsed Ho:YAG laser resonantly pumped by a Tm:YLF laser[J]. Optics & Laser Technology, 2018, 107:398-401.
[8]  Elder I F ,  Payne M . Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF[J]. Optics Communications, 1998, 145(1-6):329-339.
[9]  Dai T Y ,  Fan Z G ,  Wu J , et al. High power single-longitudinal-mode Ho:YLF unidirectional ring laser based on a composite structure of acousto-optic device and wave plate[J]. Infrared Physics & Technology, 2017, 82:40-43.
[10]  Sato H ,  Bensalah A ,  Machida H , et al. Growth and Characterization of 3-in Size Tm, Ho-Codoped LiYF4 and LiLuF4 Single Crystals by the Czochralski Method[J]. Journal of Crystal Growth, 2003, 253(s 1–4):221–229.
[11]  F  Chiossi,  Borghesani A F ,  Carugno G . Infrared and visible scintillation of Ho 3+ -doped YAG and YLF crystals[J]. Journal of Luminescence, 2018, 203:203-207.
[12]  Zhang X ,  Wang Y ,  Ju Y . LD-pumped actively Q-switched Tm,Ho:YLF laser at room temperature[J]. Optics & Laser Technology, 2007, 39(1):78-81.
[13]  Bourdet G L . Gain and absorption saturation coupling in end pumped Tm:YVO 4 and Tm,Ho:YLF CW amplifiers[J]. Optics Communications, 2000, 173(1-6):333-340.
[14]  Bachmann L ,  Craievich A F ,  Zezell D M . Crystalline structure of dental enamel after Ho:YLF laser irradiation[J]. Archives of Oral Biology, 2004, 49(11):923-929.
[15]  Zhang C ,  Zu Y ,  Yang W , et al. Epsilon-near-zero medium for optical switches in Ho solid-state laser at 2.06μm[J]. Optics & Laser Technology, 129.
[16]  Yang X T ,  Song E Z ,  Xie W Q . Compact resonantly intra-cavity pumped tunable Ho:Sc2SiO5 laser[J]. Infrared Physics & Technology, 2017, 85:154-156.
[17]  Zhang X ,  Liang Y ,  Li L , et al. Bistable performances of diode-end-pumped quasi-three-level Tm,Ho:YLF lasers[J]. Optics Communications, 2010, 283(6):1086-1089.
[18]  Yang C ,  Ju Y ,  Yao B , et al. Passively Q-switched Ho:YLF laser pumped by Tm3+-doped fiber laser[J]. Optics & Laser Technology, 2016.
[19]  Wang J ,  Yuan L ,  Zhang Y , et al. Generation of 320 mW at 10.20 μm based on CdSe Long-wave Infrared Crystal[J]. Journal of Crystal Growth, 2018:S0022024818301118.
[20]  Zhang C ,  Zhang F ,  Fan X , et al. Passively Q-switched operation of in-band pumped Ho:YLF based on Ti3C2Tx MXene[J]. Infrared Physics & Technology, 2019, 103:103076.
[21]  Zhang X ,  Ju Y ,  Wang Y . Diode-pumped single frequency Tm,Ho:YLF laser at room temperature[J]. Chinese Optics Letters, 2005, 3(8).
[22]  Jing W ,  Wang Y ,  Dai T , et al. Single-longitudinal-mode generation in a Ho: YLF ring laser with double corner cubes resonator[J]. Infrared Physics & Technology, 2018, 92:367-371.
[23] Theoretical and experimental study of a single frequency Tm,Ho:YLF laser[J]. Optics & Laser Technology, 2007, 39(4):782-785.
[24]  Tonelli M ,  Falconieri M ,  Lanzi A , et al. Comparison of Tm-sensitized Ho:Yag and Ho:YLF crystals for a laser-pumped 2 μm CW oscillator[J]. Optics Communications, 1996, 129(1-2):62-68.
[25]  Kwiatkowski J ,  Zendzian W ,  J Abc Zynski J K , et al. Continuous-wave and high repetition rate Q-switched operation of Ho:YLF laser in-band pumped by a linearly polarized Tm:fiber laser[J]. Optics & Laser Technology, 2014, 63:66-69.
[26] Dai, T, Y, et al. A tunable and single-longitudinal-mode Ho:YLF laser[J]. Infrared Physics & Technology, 2016.
[27]  Izawa J ,  Nakajima H ,  Hara H , et al. A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon[J]. Optics Communications, 2000, 180(1-3):137-140.
[28]  Nagasawa C ,  Suzuki T ,  Nakajima H , et al. Characteristics of single longitudinal mode oscillation of the 2 μm Tm,Ho:YLF microchip laser[J]. Optics Communications, 2001, 200(1-6):315-319.
[29]  Burger A ,  Ndap J O ,  Chattopadhyay K , et al. CHAPTER 4. Bulk Semiconductors for Infrared Applications[J]. Photodetectors and Fiber Optics, 2001.
[30]  Concentration effects on the IR-luminescent channels for Er- and Ho-doped LiYF 4 crystals

Related Product

Er-YLF-Crystal-Halide-Crylink
Er:YLF
Pr-YLF-Crystal-Halide-Crylink
Pr:YLF
Nd-YLF-Crystal-Halide-Crylink
Nd:YLF

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685/+86-021-69913696
Address: NO.599 Huiwang East Road, Jiading District, Shanghai
                 NO.22 Jingang Road, Lishui District, Nanjing city
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.