• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / Cr:LiCAF

Cr:LiCAF

LiCaA1F6:Cr3(Cr:LiCAF) is a new addition to a series of new tunable near-infrared laser materials. Cr:LiSAF possess suitable properties for the generation of high-energy tunable radiation in the near infrared. It exhibits small thermal lensing, a high damage threshold and a sufficiently long upper-state lifetime to ensure efficient energy storage. Furthermore, laser rods of diameters up to 25 mm can now be fabricated, which is an important consideration for the design of high-energy lasers and amplifiers. The relatively long upper-state lifetime Cr:LiCAF 170μs, makes it possible to efficiently pump these materials with flashlamps. The new chromium laser host, LiCAF, is reported to possess favorable spectroscopic and laser properties. Laser-quality LiCAF crystals appear to be moderately straightforward to produce: zone-melting, Bridgman, and Czochralski crystals have been lased. Significant scattering in these crystals, a persistent problem in early growth attempts, now appears to be under control. Recently used Bridgman crystals have scattering losses of ~0.1% cm−1, an acceptable level for most applications. The natural abundance of the constituent elements, coupled with the relatively low melting temperature (804°C) and congruent melting, forms a compelling case for the possibility of large-scale, inexpensive growth of laser-quality crystals. The laser emission of Cr:LiCAF has been tuned to between approximately 720 and 840nm and peaks at ~780nm. The radiative lifetime is ~175 μs at room temperature, and there is no evidence of concentration quenching for samples containing as many as 9 × 1020 Cr3+ ions/cm3. The intrinsic slope efficiency of LiCAF (67%) is close to that of alexandrite(65%). Recent flash-lamp-pumped Cr:LiCAF experiments demonstrated slope efficiencies of 1.6%, although passive losses in the laser rod of 3.5% cm−1 significantly affected the laser performance.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Orientation<2 deg (rod axis to crystal a-axis)
Parallelism<10〞
Perpendicularity3ˊ
Chamfer0.1mm@45°
Surface Quality10-5 S-D
Wavefront Distortionλ/8 @632.8 nm
Surface Flatnessλ/10 @632.8 nm
Clear Aperture>95%
Diameter Tolerance+0/-0.2mm
Length Tolerance±0.1mm
CoatingsR<1%@670nm+R<0.5%@700~1100nm on both faces
Laser Induced Damage Threshold>15J/cm2@TEM00, 10ns, 10Hz
Physical and Chemical Properties
Crystal StructureTrigonal
Space GroupP31C
Lattice Constantsa=5.0116, c=9.9673 Å@2%Cr doping
Density (g/cm3)2.988
Melting Point766°C
Fracture Strength, σf(MPa)3.85±8(∥c)
Fracture Toughness, KIC(MPa∙m1/2)0.39(∥a), 0.33(∥c)
Vickers Microhardness, HV(GPa)1.9±0.2(∥c)
Specific Heat(J/gK@298K)0.935
Thermal Conductivity(W·m-1·K-1)1.0(∥a), 1.68(∥c)
Thermal Expansion(10-6K-1)22.2(∥a), -9.8(∥c)
Young’s Modulus(GPa)120(∥a), 85(∥c)
Typical Doping Level0.8~1.5@.%
Optical Characteristics
Absorption Peak Wavelength(nm) 640
Absorption Cross-section at Peak(10-20cm2) 3.0
Absorption Bandwidth at Peak Wavelength~100nm
dn/dT (10-6K-1)-4.2(no), -4.6(ne)
Refractive Indexn=1.41
Laser Wavelength(nm)780
Energy-storage Lifetime(μs)170
Emission Cross-Section(10-20cm2)1.23@1.08mole%
Oscillator Strength(10-6)48(4A2-4T2), 39(4A2-4T1a), π
28(4A2-4T2), 51(4A2-4T1a), σ
Nonlinear Refractive Index(m2/W)4.5±0.7@5% doping, 1064nm
Damage Threshold(J/cm2)25@3%doping of Cr
Spectrum

Feature
Application
Literature
Feature
  • High gain cross-sections
  • Very large gain bandwidths
  • Relatively long fluorescence lifetimes,(~100μs)
  • Offer a long energy-storage lifetime, which simplifies pumping requirements andmakes the materials suitable for Q-switching and amplifier configurations
  • Have a large gain bandwidth, allowing amplification of ultrashort (femtosecond) pulses
  • Have a large emission cross section for efficient extraction of stored energy
  • Are tunable from 730 to 1000 nm (red to infrared), and the frequency may be doubled to 365 to 500 nm (blue to green)
  • Possess favorable thermomechanical properties, allowing for ease of thermal management and material fabrication
  • Are subject to very low thermal lensing, leading to good beam quality at high power levels
  • Have very low nonlinear indices (n2=4 x 10-3electrostatic charge units, or esu) and very high damage thresholds (>55 J/cm2 at 10 ns), enabling transmission of undistorted high-intensity pulses through the material
  • Have a uniform distribution of the chromium ions, permitting very uniform and high chromium-doping levels throughout the laser medium
  • Have excellent optical quality, resulting in low loss and high output power
  • Require modest crystal growth conditions (melting point < 800°C)
  • Are grown from inexpensive, nontoxic starting materials
Application
  • Amenable to flashlamppumping
  • Providing tunable high power laser radiation in the near IR
  • Ultrashort pulse generation and amplification
  • Large aperture laser rods
  • Laser rangefinders and illuminators, undersea optical communications, spectroscopy, and pumping other lasers
  • Amplifications of stretched femtosecond pulses
Literature
[1]  Malyarevich A M ,  Volk Y V ,  Yumashev K V , et al. Absorption, emission and absorption saturation of Cr ions in calcium aluminate glass[J]. Journal of Non-Crystalline Solids, 2005, 351(43-45):3551-3555.
[2]   Ca I W ,  Liu J ,  Li C , et al. Compact self-Q-switched laser near 2 μm[J]. Optics Communications, 2015.
[3]  Gvishi R ,  Gonen E ,  Kalisky Y . Studies of the spectroscopic behavior of Cr+3:LiCAF pumped by a solid-state dye laser[J]. Optical Materials, 1999, 13(1):129-133.
[4] Self-Q-switching and passively Q-switched mode-locking of dual-wavelength Nd:YSAG laser – ScienceDirect[J]. Optics & Laser Technology, 122:105860-105860.
[5]  DA  Biasetti,  Liscia E ,  Torchia G A . Optical waveguides fabricated in Cr:LiSAF by femtosecond laser micromachining[J]. Optical Materials, 2017, 73:25-32.
[6]  Samtleben T A ,  Hulliger J . LiCaAlF6 and LiSrAlF6: Tunable solid state laser host materials[J]. Optics and Lasers in Engineering, 2005, 43(3-5):251-262.
[7]  Demirbas U . Modeling and optimization of tapered-diode pumped Cr:LiCAF regenerative amplifiers[J]. Optics Communications, 2013, 311(2):90-99.
[8]  Druon F ,  Balembois F ,  Georges P . New laser crystals for the generation of ultra-short pulses[J]. Comptes Rendus Physique, 2007, 8(2):153-164.
[9]  Demirbas U ,  Uecker R ,  Klimm D , et al. Intra-cavity frequency-doubled Cr:LiCAF laser with 265 mW continuous-wave blue (395–405 nm) output[J]. Optics Communications, 2014, 320:38-42.
[10]  Zorn M ,  Wenzel H ,  Zeimer U , et al. High-power red laser diodes grown by MOVPE[J]. Journal of Crystal Growth, 2007, 298(Jan):667-671.
[11]  Vazquez R M ,  Santos M T ,  Lopez F J . Influence of neutral environment in the growth of Cr-doped LiCAF/LiSAF crystals: X-ray powder diffraction and EPR analysis[J]. Journal of Crystal Growth, 2002, s 237–239:894-898.
[12]  Hirayama Y ,  Obara M . Heat effects of metals ablated with femtosecond laser pulses[J]. Applied Surface Science, 2002, 197(none):741-745.
[13]  Agnesi A ,  Pirzio F ,  Ugolotti E , et al. Femtosecond single-mode diode-pumped Cr:LiSAF laser mode-locked with single-walled carbon nanotubes[J]. Optics Communications, 2012, 285(5):742-745.
[14]  Isemann A ,  Weels P ,  Fallnich C . Directly diode-pumped Colquiriite regenerative amplifiers[J]. Optics Communications, 2006, 260(1):211-222.
[15]  Kunpeng L ,  Li Y ,  Yanlong S , et al. Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities[J]. Optics & Laser Technology, 2015, 74:1-5.
[16]  Wang G ,  Zhang L ,  Lin Z , et al. Growth and spectroscopic characteristics of Cr 3+:CsAl(MoO 4) 2 crystal[J]. Journal of Alloys & Compounds, 2010, 489(1):293-296.
[17]  Kunpeng L ,  Yanlong S ,  Li Y , et al. High-efficiency tunable dual-wavelength Cr:LiSAF laser with external grating feedback[J]. Optics Communications, 2017, 405:233-237.
[18]  Parali U ,  Sheng X ,  Minassian A , et al. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability[J]. Optics Communications, 2017:S0030401817308313.
[19]  Wang Y ,  Huang C ,  Chen L , et al. Crystal growth of Cr 3+:LiCaAlF 6 by Bridgman technique[J]. Journal of Crystal Growth, 1996, 167(1-2):176-179.
[20]  Demirbas U . Cr: Colquiriite Lasers: Current Status and Challenges for Further Progress.  2018.
[21]  Gaabel K M ,  Russbuldt P ,  Lebert R , et al. Diode pumped Cr^3^+:LiCAF fs-laser[J]. OPTICS COMMUNICATIONS, 1998.
[22]  Liu Z ,  Shimamura K ,  Fukuda T , et al. High-energy pulse generation from solid-state ultraviolet lasers using large Ce:fluoride crystals[J]. Optical Materials, 2002, 19(1):123-128.
[23] Richard, Moncorgé. Laser materials based on transition metal ions[J]. Optical Materials, 2017.
[24]  Bai H L ,  Guo L P ,  Xie B M , et al. Self-Q-switched Nd:GGG laser[J]. Optik – International Journal for Light and Electron Optics, 2020, 215:164799.
[25]  Payziyev S ,  Makhmudov K . Solar pumped Nd:YAG laser efficiency enhancement using Cr:LiCAF frequency down-shifter[J]. Optics Communications, 2016, 380:57-60.
[26]  Wang G ,  Lin Z ,  Zhang L , et al. Spectral characterization and energy levels of Cr3+:Sc2(MoO4)3 crystal[J]. Journal of Luminescence, 2009, 129(11):1398-1400.
[27]  Diels J C ,  Rudolph W . Ultrashort Sources II[J]. Ultrashort Laser Pulse Phenomena (Second Edition), 2006:341-394.
[28]  Ready J F . Trends in Laser Development[J]. Industrial Applications of Lasers (Second Edition), 1997:131-143.
[29]  Toci G ,  Vannini M ,  Salimbeni R , et al. A second order nonlinear lens parametrization with a Ti:sapphire laser[J]. Optics Communications, 1995, 120(1):78-84.
[30]  Mehrpouya M ,  Lavvafi H ,  Darafsheh A . Microstructural Characterization and Mechanical Reliability of Laser-Machined Structures[M].  2018.

Related Product

LiCAF-Crystal-Halide-Crylink
LiCAF
Ce-LiCAF-Crystal-Halide-Crylink
Ce:LiCAF
Cr-LiSAF-Crystal-Halide-Crylink
Cr:LiSAF

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685/+86-021-69913696
Address: NO.599 Huiwang East Road, Jiading District, Shanghai
                 NO.22 Jingang Road, Lishui District, Nanjing city
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.