• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • News
You are here: Home / Fluoride Crystal / LiF
LiF Crystal- CRYLINK
LiF Block

Lithium fluoride (LiF) crystal has excellent VUV region transmittance. It is used for windows, prisms, and lenses in the visible and infrared in 0.104μm-7μm. LiF single crystal is sensitive to thermal shock and would be attacked by atmospheric moisture at 400°C. In addition irradiation produces color centers. Modest precautions should be taken against moisture and high energy radiation damage. Besides LiF softens at 600°C and is slightly plastic that can be bent into radius plates. The material can be cleaved along (100) plane and less commonly (110) plane. The optical characteristics are good and yet the structure is not perfect and cleavage is difficult. For good structure LiF is less commonly grown by the Kyropoulos method (air-grown) specifically for monochromator plates. High quality LiF is usually grown by modified Bridgman method. 

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Orientation[100]< ±0.5°
Angle Tolerance< 0.5°
Parallelism<20〞
Perpendicularity5ˊ
Surface Quality10-5 (MIL-O-13830A)
Wavefront Distortion<λ/4@633 nm
Surface Flatness<λ/8 @633 nm
Clear Aperture>90%
ChamferTechnological for protection from
 
edge cracks
Thickness/Diameter Tolerance±0.05 mm
Physical and Chemical Properties
Crystal StructureCubic (NaCl)
Lattice Constants4.026
Density2.639 g/cm3
Melting Point870°C
Thermal Conductivity /(W·m-1·K-1@314k)4.01
Specific Heat Capacity/ (J·kg-1·K-1)1562
Thermal Expansion /(10-6·K-1@283k )37
Hardness (Knoop)102-113@600g
Young`s Modulus /(1011dyne cm-2)6.5-7.6
Elastic CoefficientC11=112; C12=46; C44= 63.5
Apparent Elastic Limit/ MPa11.2@1620 psi
Cleavage-100
Optical characteristics
Transmission Range0.105 … 6 µm  
Refractive Index  no = 1.37327@2.5µm, 1.624@0.12 µm  
Reflective Loss 4.4% @4.0 µm  
Poisson Ratio0.326
Absorption Coefficient/cm-`1 0.74×10-3@2.7µm
Spectrum

Feature
Application
Literature
Feature
  • Tends to create color centers
  • Max temperature for application:400°C
  • Excellent VUV region transmittance
  • Sensitive to thermal shock
Application
  • X-ray monochromator plates
  • Optical material for VUV applications
  • Windows, prisms, and lenses
Literature
LIF in embryo culture medium is a predictive marker for clinical pregnancy following IVF-ET of patients with fallopian tube obstruction
In-situ preparation of Li x Sn-Li 2 O–LiF/reduced graphene oxide composite anode material with large capacity and high initial Coulombic efficiency
Improvement of fluidization quality of a LiF bed using internal blades
A novel high-Q and low-temperature sintering Li 2 Mg 3 Ti 1-x (Al 1/2 Nb 1/2 ) x O 6 -4wt%LiF microwave dielectric ceramics
Sintering behavior and microwave dielectric properties of Li 4 Mg 3 [Ti 0.8 (Mg 1/3 Ta 2/3 ) 0.2 ] 2 O 9 ceramics with LiF additive for LTCC applications
Stability enhancement of inverted perovskite solar cells using LiF in electron transport layer
Liquid phase in-situ synthesis of LiF coated boron powder composite and performance study
In-situ investigation of point defects kinetics in LiF using ion luminescence technique
Devising a novel method of producing high transparent magnesium aluminate spinel (MgAl 2 O 4 ) ceramics body using synthesized LiF nanopowder and spark plasma sintering
Characterisation and comparison of micropatterns written using a proton beam in Ag-activated glass and LiF crystal observed by single- and multi-photon microscopy

Go To Library

Related Product

NaF-Crystal-Halide-Crylink
NaF
LiSAF-Crystal-Halide-Crylink
LiSAF
LiCAF-Crystal-Halide-Crylink
LiCAF

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-025-68790685
Address: No.200, zhaoxian Road, Jiading Zone, Shanghai, China

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.