• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / YLiF4

YLiF4

YLF laser crystal is the abbreviation for yttrium lithium fluoride (YLiF4). YLF laser crystal is birefringent, which eliminates thermally induced depolarization loss. Pure YLF crystals are transparent within the spectrum band of 0.12 – 7.5 µm, photo-, thermal- and radiation-resistant. The YLF crystals have low values of nonlinear refraction index and thermos optical constants. YLF has good optical properties with high transparency throughout the emission spectrum of the conventional sources used for pumping solid-state lasers. YLF does not show UV damage, and it has lower non-radiative decay rates for processes occurring between electronic levels participating in the pumping and lasing process. YLF is also a good medium for mode locking at 1047 or 1053 nm and 1.313 µm as a result of its natural birefringence and low thermal lensing. Mode-locked pulses from YLF are shorter thanks to its broader linewidth, both for the 1047/1053-nm and 1.313-µm emission peaks. Yttrium Lithium Fluoride (YLF) is a crystalline material used in optics and solid-state single crystal laser rods. YLF is typically doped with materials such as neodymium, holmium, erbium and is generally immediately available in most volumes.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Doping Concentration0.5–3.0%
Orientation Tolerance5ˊ
Dopant Concentration Tolerance0.10%
Parallelism<10〞
Perpendicularity5ˊ
Chamfer0.1mm@45°
Surface Quality10-5 (MIL-O-13830A)
Wavefront Distortion<λ/8@633 nm
Surface Flatnessλ/10 @633 nm
Clear Aperture95%
Diameter2-50.8 mm
Length1-180mm
Physical and Chemical Properties
Crystal SystemScheelite Structure
SymmetryTetragonal
Space GroupC64h-T41/a
Lattice Constantsa=5.1710, c=10.7484 Å
Density (g/cm3)3.96
Melting Point1354°C
clearageTypical
Optical characteristics
Transmission Range0.22 … 8 µm  
Reflective Loss 6 … 16%@0.2 … 10 µm 
Refractive Indexno=1.46136, ne=1.48398@435.8nm
Index of Refraction

Spectrum

Feature
Application
Literature
Feature
  • High power, low beam divergence, efficient single mode operation.
  • High average power Q-switched at a moderate repetition rate
  • Linear polarized resonators for Q-switching and frequency doubling
  • Potential uniform mode for large diameter rods or slabs
Application
  • Lamp pumping, diode pumping
  • Conventional sources used for pumping solid-state lasers
  • Cascade emission between intermediate levels as well as an up-converter
  • A good medium for mode locking at 1047 or 1053 nm and 1.313 µm
Literature
[1] 王殿元, 郭艳艳. Analysis and direct calculation of the energy migration interaction parameter in high concentration Nd^3+ doped YAG laser crystal[J]. 中国稀土学报:英文版, 2009(1):62-65.
[2]  Littleford T E ,  Jackson R A ,  Read M . An atomistic surface simulation study predicting morphologies and segregation in yttrium lithium fluoride[J]. Surface Science, 2012, 606(19-20):1550-1555.
[3]  Burlot R , R Moncorgé,  Boulon G . Visible and infrared luminescence properties of Er 3+ -doped Sc 2 : O 3 : LiNbO 3 crystal fibers[J]. Journal of Luminescence, 1997, s 72–74(96):135-138.
[4]  Hai G ,  Min Y ,  Zhang W . Upconversion of Er 3+ Ions in LiKGdF 5: Er 3+, Dy 3+ Single Crystal Produced by Infrared and Green Laser[J]. Journal of Rare Earths, 2006, 24(006):740-744.
[5]  Bensalah A ,  Guyot Y ,  Brenier A , et al. Spectroscopic Properties of Yb3+:LuLiF4 Crystal Grown by the Czochralski Method for Laser Applications and Evaluation of Quenching Processes: A Comparison with Yb3+:YLiF4.[J]. Cheminform, 2005, 36(3).
[6]  Bikhert Y V ,  Lisitsyn V M ,  Lisitsyna L A , et al. Pulsed cathodoluminescence of YLiF4 crystals at 15 K[J]. Nuclear Inst & Methods in Physics Research B, 2014, 327:121-123.
[7]  Monte A ,  Messias D N . Photon migration at multiple frequencies in YLiF4:Nd3+ crystal[J]. Journal of Luminescence, 2010, 130(4):674-677.
[8]  Martin J ,  Boonyarith T ,  Manson N B . Optical/RF double resonances in YLiF 4 : Ho 3+[J]. Journal of Luminescence, 1995, 63(5):297-300.
[9]  Suzuki T ,  Masaki S I ,  Mizuno K , et al. Preparation of novel transparent glass–ceramics containing fluoride crystals[J]. Optical Materials, 2011, 33( 12):1943-1947.
[10]  Yanagida T ,  Fujimoto Y ,  Ishizu S , et al. Optical and scintillation properties of Nd differently doped YLiF4 from VUV to NIR wavelengths[J]. Optical Materials, 2015, 41:36-40.
[11]  Triboulet A ,  Rogalski A . Materials science and applications of solid crystals[J]. III-Vs Review, 2001, 14(2):46-50.
[12] Manoj, Kumar, Mahata, et al. Host Sensitized Luminescence and Time-Resolved Spectroscopy of YVO4: Ho3+ Nanocrystals[J]. Physics Procedia, 2015.
[13]  Chen D ,  Wang Y ,  Yunlong Y U , et al. Infrared to ultraviolet upconversion luminescence in Nd 3+ doped nano-glass-ceramic[J]. Journal of Rare Earths, 2008, 26( 3):428-432.
[14]  En De  B ,  Brooks R L ,  Tiedje H F , et al. Measurement of the 4F5/2 and 2H(2)9/2 manifold lifetime in Nd3+:YLiF4[J]. Journal of Luminescence, 2006, 117(1):13-19.
[15]  Bensalah A ,  Shimamura K ,  Sudesh V . Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers[J]. Journal of Crystal Growth, 2001, 223(4):539-544.
[16]  Nakauchi D ,  Okada G ,  Koshimizu M , et al. Optical and scintillation properties of Nd-doped SrAl2O4 crystals[J]. Journal of Rare Earths, 2016, 34(8):757-762.
[17]  Bensalah A ,  Guyot Y ,  Ito M , et al. Growth of Yb 3+-doped YLiF 4 laser crystal by the Czochralski method. Attempt of Yb 3+ energy level assignment and estimation of the laser potentiality[J]. Optical Materials, 2004, 26(4):375-383.
[18]  Cheng J ,  Wen J ,  Chen Y , et al. Crystal-field analyses for trivalent lanthanide ions in LiYF4[J]. Journal of Rare Earths, 2016, 34(10):1048-1052.
[19] J López-Solano, P Rodríguez-Hernández,  Mu?Oz A , et al. Theoretical study of the scheelite-to-fergusonite phase transition in YLiF 4 under pressure[J]. Journal of Physics & Chemistry of Solids, 2006, 67(9-10):2077-2082.
[20]  Tsuneoka T ,  Kojima K ,  Bojja S . Upconversion fluorescence and low temperature fluorescence properties in Nd3+-doped ZnCl2-based glass[J]. Journal of Non-Crystalline Solids, 1996, 202(3):297-302.
[21]  Chen X ,  Collins J ,  Dibartolo B , et al. Up-conversion luminescence of Er3+-doped yttrium, scandium, gallium garnet at different temperatures[J]. Journal of Luminescence, 1997, s 72–74(none):168-170.
[22]  Yanhong L I ,  Zhang Y ,  Hong G , et al. Upconversion luminescence of Y_2O_3:Er~(3+), Yb~(3+) nanoparticles prepared by a homogeneous precipitation method. 稀土学报(英文版), 2008.
[23]  Yang K ,  Yan L ,  Yu C , et al. Upconversion Luminescence Properties of Ho3+, Tm3+, Yb3+ Co-Doped Nanocrystal NaYF4 Synthesized by Hydrothermal Method[J]. Journal of Rare Earths, 2006, 24(6):757-760.
[24]  Ganem J ,  Wang Y P ,  Boye D , et al. Nonexponential photon-echo decays of paramagnetic ions in the superhyperfine limit[J]. Physical Review Letters, 1991, 66(12):695-698.
[25]  Errandonea D , FJ Manjón,  Somayazulu M , et al. Effects of pressure on the local atomic structure of CaWO4 and YLiF4: Mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitions[J]. Journal of Solid State Chemistry, 2004, 177(4-5):1087-1097.
[26]  Mingyi S U ,  Y  Zhou,  Wang K , et al. Effect of Yb~(3+) concentration on upconversion luminescence of AlON:Er~(3+) phosphors. 稀土学报(英文版), 2015.
[27]  Pei X ,  Hou Y ,  Zhao S , et al. Frequency upconversion of Tm3+ and Yb3+ codoped YLiF4 synthesized by hydrothermal method[J]. Materials Chemistry & Physics, 2005, 90(2-3):270-274.
[28]  Lupei V ,  Osiac E ,  Sandrock T , et al. Excited state dynamics in sensitized photon avalanche processes[J]. Journal of Luminescence, 1998, s 76–77(97):441-446.
[29]  Optically-detected nuclear quadrupole resonance of Eu 3+ LaF3
[30]  Research  on  Up-Conversion  Mechanism  in  Er3+  /Yb3′  -Codoped Oxyfluoride  Glass

Related Product

CeF3-Crystal-Halide-Crylink
CeF3
LiLuF4-Crystal-Halide-Crylink
LiLuF4
Y-BaF2-Crystal-Halide-Crylink
Y:BaF2

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-21-66566068
Address: Building 7, No.718 Baoqi Road, Baoshan District, Shanghai, China
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.