• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / Er:YLF

Er:YLF

Er3+:YLF crystals are characterized by low phonon frequency, which decreases the probability of non-radiative multi-phonon relaxations, therefore increases luminescence quantum efficiency. Long lifetime of laser emitting levels allow higher energy storage, which is useful for the Q-switch lasing regime. High band-gap along with low phonon energy determines very wide transparency range, which is possibly from VUV to 10μm region. Negative Er3+:YLF thermo-optic coefficient is an advantage, since it reduces thermal-lensing effect and improves beam shape as well as stability at high average pump power.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
OrientationA-cut
Parallelism<10〞
Perpendicularity<10ˊ
Surface Quality10-5 S-D
Wavefront Distortion<λ/4 per inch@632.8 nm
Surface Flatness<λ/10 @632.8 nm
Clear Aperture>90%
Face Dimensions Tolerance+0.0/-0.1 mm
Length Tolerance±0.1mm
Chamfer<0.1mm@45°
Physical and Chemical Properties
Structure SymmetryTetragonal
Lattice Constantsa=5.173, c=10.747 Å@1.5%
Specific mass3.95g/cm3
Melting Point819°C
Thermal Conductivity /(W·m-1·K-1)~5
Specific Heat(J·g-1·K-1)0.79
Thermal Expansion /(10-6·K-1 )8
Hardness (kg/mm2@Mohs)5
Young`s Modulus /(108g/cm2)7.65
Optical characteristics
Typical Doping Level15@.%
Refractive Index (@2070nm)no=1.442, ne=1.464
Thermo-optic Coefficient(10-6·K-1)-2(∥a), -4.1(∥c)
Lifetime of 4I11/2 Erbium Energy Level(ms)4
Emission Cross Section(10-20/cm2)1.5@2800nm
Absorption Peak Wavelength972nm
Absorption Coefficient at Peak Wavelength28cm-1
Absorption Bandwidth at Peak Wavelength~1nm
Laser Wavelength2810nm
Absorption and Emission Spectrum

Feature
Application
Literature
Feature
  • A low phonon frequency
  • Long lifetimes of the laser emitting levels
  • Wide transparency range (from the VUV to the 10 μm region)
  • Negative thermo-optic coefficient
  • Custom crystals available upon request
Application
  • CW and Q-switched ~3 μm lasers for oral surgery, dentistry, implant dentistry, and otolaryngology
  • Up-conversion visible lasers for display technology, medicine (diagnosis and treatment)
Literature
[1] Tikerpae, M, Jackson, et al. 2.8 @mm Er:YLF laser transversely pumped with a CW diode laser bar[J]. OPTICS COMMUNICATIONS, 1999.
[2]  Mateos X ,  Pujol M C ,  F  Güell, et al. Infrared-to-green up-conversion in Er 3+, Yb 3+-doped monoclinic KGd(WO 4) 2 single crystals[J]. Optical Materials, 2004, 27(3):475-479.
[3]  Petrov V . Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals[J]. Progress in Quantum Electronics, 2015, 42:1-106.
[4]  Ulc J , H Jelínková. Solid-state lasers for medical applications[J]. Lasers for Medical Applications, 2013:127-176.
[5] Tang,  C. L , Bosenberg, et al. Optical parametric oscillators[J]. Proceedings of the IEEE, 1992, 80(3):365-374.
[6]  Toma O ,  Georgescu S . Competition between green and infrared emission in Er:YLiF 4 upconversion lasers[J]. Optics Communications, 2011, 284(1):388-397.
[7] W Lüthy,  Weber H P . Diode-pumped IR solid-state lasers[J]. Infrared Physics & Technology, 1995, 36(1):267-272.
[8]  Moloney J V ,  AC  Newell. Nonlinear optics[J]. Physica D Nonlinear Phenomena, 1990, 44(1):1-37.
[9]  Fornasiero L ,  Mix E ,  Peters V , et al. Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3[J]. Ceramics International, 2000, 26(6):589-592.
[10] Jiaqi, Hong, Lianhan, et al. Effect of erbium concentration on optical properties of Er:YLF laser crystals[J]. Infrared Physics & Technology, 2017.
[11]  Liithy W ,  Weber P ,  Rogin P , et al. Emission properties of an optimised 2.8 brn Er”+:YLF laser.  1997.
[12] Huailiang, Xu, and, et al. Dynamics of visible-to-ultraviolet upconversion in YAlO3: 1% Er3+[J]. Chemical Physics, 2003, 287(1-2):155-159.
[13] None. Author index to Volumes 161–170[J]. Applied Mathematics & Computation, 2005, 170(2):1477–1531.
[14]  Favilla E ,  Cittadino G ,  Veronesi S , et al. Comparative analysis of upconversion efficiencies in fluoride materials for photovoltaic application[J]. Solar Energy Materials and Solar Cells, 2016, 157:415-421.
[15]  Godard A . Infrared (2–12 μm) Solid-State Laser Sources: A Review[J]. Comptes Rendus Physique, 2007, 8(10):1100-1128.
[16] A P, Loiko, A E,等. Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal[J]. Journal of Luminescence, 2016.
[17]  Hazenkamp M F , HU Güdel. Luminescence properties of solids[J]. Current Opinion in Solid State & Materials Science, 1996, 1(2):177-182.
[18]  Bonelli L ,  Cornacchia F ,  Tonelli M , et al. Spectroscopic properties of Er:NaLa(WO4)2 crystals and effect of Ce codoping onto the excited state energy transformation in this crystal[J]. Journal of Luminescence, 2013, 135:178-186.
[19]  Fornasiero L ,  Petermann K ,  Heumann E , et al. Spectroscopic properties and laser emission of Er 3+ in scandium silicates near 1.5 μm[J]. Optical Materials, 1998, 10(1):9-17.
[20]  Thorleuchter D ,  Poel D . Technology classification with latent semantic indexing[J]. Expert Systems with Applications: An International Journal, 2013.
[21]  You W ,  Huang Y ,  Chen Y , et al. The Yb3+ to Er3+ energy transfer in YAl3(BO3)4 crystal[J]. Optics Communications, 2008, 281(19):4936-4939.
[22]  Scheps R . Upconversion laser processes[J]. Progress in Quantum Electronics, 1996, 20(4):271-358.
[23]  Camargo M B ,  Gomes L ,  Morato S P . Quantitative analysis of erbium luminescente in LiYF, doped with low ( 1.41%) and high (38.5%) Ert3 concentrations.
[24]  Huber G ,  Heumann E ,  Sandrock T , et al. Up-conversion processes in laser crystals[J]. Journal of Luminescence, 1997, 72(96):1-3.
[25] Bibliography Current World Literature[J]. Current Opinion in Pediatrics, 2000, 12.
[26]  Walsh B M ,  Lee H R ,  Barnes N P . Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169.
[27]  Upconversion in Er3+:YA103 produced by metastable state absorption
[28]  Diode-pumped high power 2.7 m m Er:Y 2 O 3 ceramic laser at rooM temperature
[29]  Concentration effects on the IR-luminescent channels for Er- and Ho-doped LiYF 4 crystals
[30]  LASERS

Related Product

Pr-YLF-Crystal-Halide-Crylink
Pr:YLF
Nd-YLF-Crystal-Halide-Crylink
Nd:YLF
Tm-YLF-Crystal-Halide-Crylink
Tm:YLF

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-21-66566068
Address: Building 7, No.718 Baoqi Road, Baoshan District, Shanghai, China
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.